Suppr超能文献

多区域临床试验中应计项目的贝叶斯建模与预测

Bayesian modeling and prediction of accrual in multi-regional clinical trials.

作者信息

Deng Yi, Zhang Xiaoxi, Long Qi

机构信息

1 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA.

2 Pfizer Inc., New York, NY, USA.

出版信息

Stat Methods Med Res. 2017 Apr;26(2):752-765. doi: 10.1177/0962280214557581. Epub 2014 Nov 3.

Abstract

In multi-regional trials, the underlying overall and region-specific accrual rates often do not hold constant over time and different regions could have different start-up times, which combined with initial jump in accrual within each region often leads to a discontinuous overall accrual rate, and these issues associated with multi-regional trials have not been adequately investigated. In this paper, we clarify the implication of the multi-regional nature on modeling and prediction of accrual in clinical trials and investigate a Bayesian approach for accrual modeling and prediction, which models region-specific accrual using a nonhomogeneous Poisson process and allows the underlying Poisson rate in each region to vary over time. The proposed approach can accommodate staggered start-up times and different initial accrual rates across regions/centers. Our numerical studies show that the proposed method improves accuracy and precision of accrual prediction compared to existing methods including the nonhomogeneous Poisson process model that does not model region-specific accrual.

摘要

在多区域试验中,潜在的总体和特定区域的入组率通常不会随时间保持恒定,并且不同区域可能有不同的启动时间,这与每个区域内入组的初始跃升相结合,常常导致总体入组率不连续,而与多区域试验相关的这些问题尚未得到充分研究。在本文中,我们阐明了多区域性质对临床试验中入组建模和预测的影响,并研究了一种用于入组建模和预测的贝叶斯方法,该方法使用非齐次泊松过程对特定区域的入组进行建模,并允许每个区域的潜在泊松率随时间变化。所提出的方法可以适应不同区域/中心交错的启动时间和不同的初始入组率。我们的数值研究表明,与包括未对特定区域入组进行建模的非齐次泊松过程模型在内的现有方法相比,所提出的方法提高了入组预测的准确性和精度。

相似文献

1
Bayesian modeling and prediction of accrual in multi-regional clinical trials.
Stat Methods Med Res. 2017 Apr;26(2):752-765. doi: 10.1177/0962280214557581. Epub 2014 Nov 3.
2
Joint monitoring and prediction of accrual and event times in clinical trials.
Biom J. 2012 Nov;54(6):735-49. doi: 10.1002/bimj.201100180. Epub 2012 Aug 21.
3
Modeling and prediction of subject accrual and event times in clinical trials: a systematic review.
Clin Trials. 2012 Dec;9(6):681-8. doi: 10.1177/1740774512447996. Epub 2012 Jun 6.
4
Modeling and validating Bayesian accrual models on clinical data and simulations using adaptive priors.
Stat Med. 2015 Feb 20;34(4):613-29. doi: 10.1002/sim.6359. Epub 2014 Nov 6.
5
Bayesian accrual modeling and prediction in multicenter clinical trials with varying center activation times.
Pharm Stat. 2020 Sep;19(5):692-709. doi: 10.1002/pst.2025. Epub 2020 Apr 21.
6
Stochastic modeling and prediction for accrual in clinical trials.
Stat Med. 2010 Mar 15;29(6):649-58. doi: 10.1002/sim.3847.
8
Bayesian joint models for multi-regional clinical trials.
Biostatistics. 2024 Jul 1;25(3):852-866. doi: 10.1093/biostatistics/kxad023.
9
Interim recruitment prediction for multi-center clinical trials.
Biostatistics. 2022 Apr 13;23(2):485-506. doi: 10.1093/biostatistics/kxaa036.
10
Statistical modeling and prediction of clinical trial recruitment.
Stat Med. 2019 Mar 15;38(6):945-955. doi: 10.1002/sim.8036. Epub 2018 Nov 8.

引用本文的文献

1
Bayesian approach for design and analysis of medical device trials in the era of modern clinical studies.
Med Rev (2021). 2023 Oct 3;3(5):408-424. doi: 10.1515/mr-2023-0026. eCollection 2023 Oct.
2
Bayesian accrual modeling and prediction in multicenter clinical trials with varying center activation times.
Pharm Stat. 2020 Sep;19(5):692-709. doi: 10.1002/pst.2025. Epub 2020 Apr 21.
3
Cure modeling in real-time prediction: How much does it help?
Contemp Clin Trials. 2017 Aug;59:30-37. doi: 10.1016/j.cct.2017.05.012. Epub 2017 May 22.

本文引用的文献

1
Bayesian adaptive phase II screening design for combination trials.
Clin Trials. 2013;10(3):353-62. doi: 10.1177/1740774512470316. Epub 2013 Jan 28.
2
Prediction of accrual closure date in multi-center clinical trials with discrete-time Poisson process models.
Pharm Stat. 2012 Sep-Oct;11(5):351-6. doi: 10.1002/pst.1506. Epub 2012 Mar 12.
3
Models for patients' recruitment in clinical trials and sensitivity analysis.
Stat Med. 2012 Jul 20;31(16):1655-74. doi: 10.1002/sim.4495. Epub 2012 Feb 17.
4
Multi-regional clinical trials--what are the challenges?
Pharm Stat. 2010 Jul-Sep;9(3):171-2. doi: 10.1002/pst.457.
5
A systematic review of models to predict recruitment to multicentre clinical trials.
BMC Med Res Methodol. 2010 Jul 6;10:63. doi: 10.1186/1471-2288-10-63.
6
Stochastic modeling and prediction for accrual in clinical trials.
Stat Med. 2010 Mar 15;29(6):649-58. doi: 10.1002/sim.3847.
9
Predicting accrual in clinical trials with Bayesian posterior predictive distributions.
Stat Med. 2008 Jun 15;27(13):2328-40. doi: 10.1002/sim.3128.
10
Dose-finding in phase I clinical trials based on toxicity probability intervals.
Clin Trials. 2007;4(3):235-44. doi: 10.1177/1740774507079442.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验