Department of Neurobiology, Interdisciplinary Centre for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany.
Adv Exp Med Biol. 2012;970:377-405. doi: 10.1007/978-3-7091-0932-8_17.
Calcium is the major intracellular messenger linking synaptic activity in neurons to gene expression to control diverse functions including adaptive responses to synaptic activity as well as survival and death (Bading et al. 1993; Hardingham et al. 1997; Chawla and Bading 2001; West et al. 2001; Zhang et al. 2007; Flavell and Greenberg 2008; Mellstrom et al. 2008; Redmond 2008; Wayman et al. 2008; Bootman et al. 2009; Zhang et al. 2009; Hardingham and Bading 2010). Calcium entry at the synapse acts locally to activate signaling cascades which regulate posttranslational modifications essential for synaptic plasticity, such as the insertion of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into the postsynaptic membrane (Soderling 2000; Malinow and Malenka 2002; Ehrlich and Malinow 2004). Synaptic activity can also evoke calcium signals in the nucleus which regulate gene pools largely through the phosphorylation of cAMP response element-binding protein (CREB) and its coactivator, CREB-binding protein (CBP) (Bading et al. 1993; Hardingham et al. 1997; Hardingham et al. 1999; Hu et al. 1999; Hardingham et al. 2001b; Impey et al. 2002; Zhang et al. 2009). Distinct mechanisms have been proposed to mediate synaptically generated calcium signals in subcompartments of pyramidal neurons; N-methyl-D -aspartate receptors (NMDARs) and ryanodine receptors have been implicated in the spine, inositol 3,4,5 triphosphate (IP3) receptors in the dendrites, and L-type voltage-gated calcium channels (VGCCs) at the soma and nucleus, although both NMDARs and IP3 receptors can also contribute to somatic and nuclear calcium signals under certain stimulation conditions (Nakamura et al. 1999; Bardo et al. 2006; Raymond and Redman 2006; Watanabe et al. 2006; Hong and Ross 2007; Hagenston et al. 2008; Bengtson et al. 2010). We review here the calcium signaling pathways underlying synaptically activated gene transcription leading to long-lasting changes in synaptic efficacy and memory as well as the physiological mechanisms by which synaptic activity evokes nuclear calcium signals.
钙是一种主要的细胞内信使,将神经元中的突触活动与基因表达联系起来,以控制各种功能,包括对突触活动的适应性反应以及存活和死亡(Bading 等人,1993 年;Hardingham 等人,1997 年;Chawla 和 Bading,2001 年;West 等人,2001 年;Zhang 等人,2007 年;Flavell 和 Greenberg,2008 年;Mellstrom 等人,2008 年;Redmond,2008 年;Wayman 等人,2008 年;Bootman 等人,2009 年;Zhang 等人,2009 年;Hardingham 和 Bading,2010 年)。突触处的钙内流局部激活信号级联,调节突触可塑性所必需的翻译后修饰,如α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)插入突触后膜(Soderling,2000 年;Malinow 和 Malenka,2002 年;Ehrlich 和 Malenka,2004 年)。突触活动也可以在核内引发钙信号,这些信号主要通过环磷酸腺苷反应元件结合蛋白(CREB)及其共激活因子 CREB 结合蛋白(CBP)的磷酸化来调节基因库(Bading 等人,1993 年;Hardingham 等人,1997 年;Hardingham 等人,1999 年;Hu 等人,1999 年;Hardingham 等人,2001b 年;Impey 等人,2002 年;Zhang 等人,2009 年)。已经提出了不同的机制来介导在锥体神经元的亚区室中产生的突触相关钙信号;N-甲基-D-天冬氨酸受体(NMDARs)和肌醇 1,4,5-三磷酸受体(IP3Rs)被认为与棘突有关,而肌醇 3,4,5-三磷酸受体(IP3Rs)则与树突有关,而 L 型电压门控钙通道(VGCCs)则与躯体和核有关,尽管 NMDARs 和 IP3Rs 在某些刺激条件下也可以有助于躯体和核内钙信号(Nakamura 等人,1999 年;Bardo 等人,2006 年;Raymond 和 Redman,2006 年;Watanabe 等人,2006 年;Hong 和 Ross,2007 年;Hagenston 等人,2008 年;Bengtson 等人,2010 年)。我们在这里回顾了突触激活基因转录的钙信号通路,这些通路导致突触效能的长期变化和记忆,以及突触活动引发核内钙信号的生理机制。