文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

非离子型电压门控钙通道信号转导。

Non-ionotropic voltage-gated calcium channel signaling.

机构信息

Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Channels (Austin). 2024 Dec;18(1):2341077. doi: 10.1080/19336950.2024.2341077. Epub 2024 Apr 11.


DOI:10.1080/19336950.2024.2341077
PMID:38601983
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11017947/
Abstract

Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca) and Ca occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.

摘要

电压门控钙通道(VGCCs)是可兴奋细胞内钙离子(Ca)的主要通道。最近的研究强调了 VGCCs 的非离子型功能,揭示了它们在没有离子流动的情况下激活细胞内途径的能力。这种非离子型信号转导模式在兴奋偶联过程中起着关键作用,包括通过兴奋-转录(ET)的基因转录、通过兴奋-分泌(ES)的突触传递以及通过兴奋-收缩(EC)的心脏收缩。然而,值得注意的是,这些兴奋偶联过程需要细胞外钙(Ca)和通道离子孔的 Ca 占据。类似于 N-甲基-D-天冬氨酸受体(NMDA)表现出的非离子型信号的“非典型”特征,NMDA 不需要离子内流,但需要细胞外 Ca,VGCC 的激活需要去极化触发的构象变化(s)伴随着 Ca 结合到开放通道。在这里,我们讨论了 VGCCs 作为 Ca 结合大分子在 ES、ET 和 EC 偶联中的作用,它将外部刺激转导为细胞内输入,然后升高细胞内 Ca。我们强调了识别开放离子孔内的钙离子占据及其对钙流入之前的兴奋偶联过程的贡献。动作电位的上升触发的 VGCC 的非离子型激活,为阐明突触传递、心脏收缩和第一波基因的快速诱导的毫秒性质的机制方面提供了一个概念框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/74e482a82621/KCHL_A_2341077_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/bc571db59ce9/KCHL_A_2341077_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/2e25f5363c62/KCHL_A_2341077_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/1d3c41eacd6e/KCHL_A_2341077_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/dff1242f4400/KCHL_A_2341077_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/6eb817c7562f/KCHL_A_2341077_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/4df5419b60b3/KCHL_A_2341077_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/e9a709e1a681/KCHL_A_2341077_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/21994afffff4/KCHL_A_2341077_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/74e482a82621/KCHL_A_2341077_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/bc571db59ce9/KCHL_A_2341077_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/2e25f5363c62/KCHL_A_2341077_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/1d3c41eacd6e/KCHL_A_2341077_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/dff1242f4400/KCHL_A_2341077_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/6eb817c7562f/KCHL_A_2341077_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/4df5419b60b3/KCHL_A_2341077_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/e9a709e1a681/KCHL_A_2341077_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/21994afffff4/KCHL_A_2341077_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/11017947/74e482a82621/KCHL_A_2341077_F0009_OC.jpg

相似文献

[1]
Non-ionotropic voltage-gated calcium channel signaling.

Channels (Austin). 2024-12

[2]
Ion occupancy of the channel pore is critical for triggering excitation-transcription (ET) coupling.

Cell Calcium. 2019-10-10

[3]
Voltage-gated calcium channels function as Ca2+-activated signaling receptors.

Trends Biochem Sci. 2014-1-2

[4]
β-Subunit of the voltage-gated Ca channel Cav1.2 drives signaling to the nucleus via H-Ras.

Proc Natl Acad Sci U S A. 2018-8-27

[5]
Voltage-driven Ca(2+) binding at the L-type Ca(2+) channel triggers cardiac excitation-contraction coupling prior to Ca(2+) influx.

Biochemistry. 2012-11-21

[6]
More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation.

Channels (Austin). 2021-12

[7]
Evolution of Excitation-Contraction Coupling.

Adv Exp Med Biol. 2020

[8]
Ca Channels Mediate Bidirectional Signaling between Sarcolemma and Sarcoplasmic Reticulum in Muscle Cells.

Cells. 2019-12-24

[9]
Cardiac-type EC-coupling in dysgenic myotubes restored with Ca2+ channel subunit isoforms alpha1C and alpha1D does not correlate with current density.

Biophys J. 2003-6

[10]
Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.

Circ Res. 2007-9-14

引用本文的文献

[1]
Neocortical layer-5 tLTD relies on non-ionotropic presynaptic NMDA receptor signaling.

Elife. 2025-7-25

[2]
Alternative Splicing and CaV-Associated Channelopathies.

Wiley Interdiscip Rev RNA. 2025

[3]
Calcium channels as pharmacological targets for cancer therapy.

Clin Exp Med. 2025-3-25

本文引用的文献

[1]
EMC chaperone-Ca structure reveals an ion channel assembly intermediate.

Nature. 2023-7

[2]
Autism associated mutations in β subunit of voltage-gated calcium channels constitutively activate gene expression.

Cell Calcium. 2022-12

[3]
Analysis of tripartite Synaptotagmin-1-SNARE-complexin-1 complexes in solution.

FEBS Open Bio. 2023-1

[4]
The Core Complex of the Ca-Triggered Presynaptic Fusion Machinery.

J Mol Biol. 2023-1-15

[5]
Endoplasmic Reticulum-Plasma Membrane Junctions as Sites of Depolarization-Induced Ca Signaling in Excitable Cells.

Annu Rev Physiol. 2023-2-10

[6]
Ca -independent transmission at the central synapse formed between dorsal root ganglion and dorsal horn neurons.

EMBO Rep. 2022-11-7

[7]
Mild membrane depolarization in neurons induces immediate early gene transcription and acutely subdues responses to a successive stimulus.

J Biol Chem. 2022-9

[8]
Revisiting the molecular basis of synaptic transmission.

Prog Neurobiol. 2022-9

[9]
All-atom molecular dynamics simulations of Synaptotagmin-SNARE-complexin complexes bridging a vesicle and a flat lipid bilayer.

Elife. 2022-6-16

[10]
Syntaxin-1A modulates vesicle fusion in mammalian neurons via juxtamembrane domain dependent palmitoylation of its transmembrane domain.

Elife. 2022-5-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索