Suppr超能文献

在日本,使用数字患者照片和电子病历数据作为诊断工具。

Use of digital patient photographs and electronic medical record data as diagnostic tools in Japan.

机构信息

Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.

出版信息

J Med Syst. 2012 Oct;36(5):3321-6. doi: 10.1007/s10916-012-9824-4. Epub 2012 Feb 16.

Abstract

An electronic medical record (EMR) system was introduced to the University of Miyazaki Hospital, in Japan, in 2006. This hospital is the only one in Japan to store digital photographs of patients within EMRs. In this paper, we report on the utility of these digital photographs for disease diagnosis. Digital photographs of patients were taken at the time of hospitalization, and have been used for patient identification by medical staff. More than 20,000 digital photographs have been saved, along with examination data and medical history classified by disease, since the introduction of EMR. In the first part of the present study, we analyzed the facial cheek color of patients using photographs taken at the time of hospitalization in relation to diagnoses in six disease categories that were considered to lead to characteristic facial skin characteristics. We verified the presence or absence of a characteristic color for each disease category. Next, we focused on four diseases, Analysis of the facial skin color of 1268 patients found the same patterns of characteristic color. Overall, we found significant differences in complexion according to disease type, based on the analysis of color from digital photos and other EMR information. We propose that color analysis data should become an additional item of information stored in EMRs.

摘要

日本宫崎大学医院于 2006 年引入了电子病历(EMR)系统。该医院是日本唯一一家在 EMR 中存储患者数码照片的医院。在本文中,我们报告了这些数码照片在疾病诊断中的应用。患者的数码照片在住院期间拍摄,并已被医务人员用于患者识别。自引入 EMR 以来,已保存了超过 20,000 张数码照片,以及按疾病分类的检查数据和病史。在本研究的第一部分中,我们分析了住院期间拍摄的患者面部脸颊颜色与被认为导致特征性面部皮肤特征的六种疾病类别的诊断之间的关系。我们验证了每种疾病类别的特征颜色是否存在。接下来,我们专注于四种疾病,对 1268 名患者的面部皮肤颜色进行分析,发现了相同的特征性颜色模式。总的来说,根据数码照片和其他 EMR 信息的颜色分析,我们发现肤色根据疾病类型存在显著差异。我们提出,颜色分析数据应成为 EMR 中存储的附加信息项。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验