Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio s/n, Seville, Spain.
Ann Bot. 2012 Apr;109(5):953-64. doi: 10.1093/aob/mcs011. Epub 2012 Feb 19.
The Mediterranean Basin is one of the most important regions for the Earth's plant biodiversity; however, the scarcity of studies on fine scale patterns of genetic variation in this region is striking. Here, an assessment is made of the spatial genetic structure of all known locations of the three Sardinian endemic species of Aquilegia in order to determine the relative roles of gene flow and genetic drift as underlying evolutionary forces canalizing the divergence of Sardinian Aquilegia taxa, and to see if the spatial genetic structure found fits the current taxonomic differentiation of these taxa.
DNA from 89 individuals from all known locations of Aquilegia across Sardinia was analysed by means of amplified fragment length polymorphism (AFLP) markers. Both principal co-ordinates analysis (PCoA) and Bayesian clustering analyses were used to determine the spatial genetic structure irrespective of any taxonomic affiliation. Historical effects of gene flow and genetic drift were assessed by checking for the existence of isolation-by-distance patterns.
STRUCTURE and PCoA analyses revealed a pattern of genetic variation geographically structured into four spatial genetic groups. No migration-drift equilibrium was detected for Aquilegia in Sardinia, when analysed either as a whole or in individual groups. The scenario approached a Case III pattern sensu Hutchinson and Templeton, which is associated with extreme isolation conditions where genetic drift has historically played a dominant role over gene flow.
The pattern of genetic variation of Sardinian taxa of Aquilegia indicates that genetic drift has been historically more influential than gene flow on population structure of Sardinian species of Aquilegia. Limited seed dispersal and divergent selection imposed by habitat conditions have been probably the main causes reinforcing post-Pleistocene geographical isolation of Aquilegia populations. The spatial genetic structure found here is not fully compatible with current taxonomic affiliations of Sardinian Aquilegia taxa. This is probably a consequence of the uncoupling between morphological and genetic patterns of differentiation frequently found in recently radiated taxa.
地中海盆地是地球上植物生物多样性最重要的地区之一;然而,该地区对遗传变异的精细尺度模式的研究却很少。在这里,我们评估了三种撒丁岛特有翠雀属植物所有已知分布点的空间遗传结构,以确定基因流和遗传漂变作为潜在进化力量在引导撒丁岛翠雀属植物分化中的相对作用,并观察发现的空间遗传结构是否与这些分类群的当前分类分化相吻合。
使用扩增片段长度多态性(AFLP)标记分析来自撒丁岛所有已知翠雀属植物个体的 DNA。使用主坐标分析(PCoA)和贝叶斯聚类分析来确定空间遗传结构,而不考虑任何分类归属。通过检查是否存在隔离距离模式来评估历史上基因流和遗传漂变的影响。
结构和 PCoA 分析显示,遗传变异在地理上呈现出四个空间遗传群的格局。当作为一个整体或在各个群体中进行分析时,撒丁岛翠雀属植物中没有检测到迁移-漂变平衡。该情景接近 Hutchinson 和 Templeton 提出的案例 III 模式,这与极端隔离条件有关,在这种条件下,遗传漂变在历史上一直比基因流更具主导作用。
撒丁岛翠雀属植物的遗传变异模式表明,遗传漂变在历史上对撒丁岛翠雀属植物种群结构的影响大于基因流。有限的种子扩散和由生境条件引起的分歧选择可能是加强翠雀属植物种群在更新世后地理隔离的主要原因。这里发现的空间遗传结构与撒丁岛翠雀属植物的当前分类归属不完全兼容。这可能是在最近辐射类群中经常发现的形态和遗传分化模式解耦的结果。