Suppr超能文献

SOS!一种用于刺激随机优化的算法和软件。

SOS! An algorithm and software for the stochastic optimization of stimuli.

机构信息

Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.

出版信息

Behav Res Methods. 2012 Sep;44(3):675-705. doi: 10.3758/s13428-011-0182-9.

Abstract

The characteristics of the stimuli used in an experiment critically determine the theoretical questions the experiment can address. Yet there is relatively little methodological support for selecting optimal sets of items, and most researchers still carry out this process by hand. In this research, we present SOS, an algorithm and software package for the stochastic optimization of stimuli. SOS takes its inspiration from a simple manual stimulus selection heuristic that has been formalized and refined as a stochastic relaxation search. The algorithm rapidly and reliably selects a subset of possible stimuli that optimally satisfy the constraints imposed by an experimenter. This allows the experimenter to focus on selecting an optimization problem that suits his or her theoretical question and to avoid the tedious task of manually selecting stimuli. We detail how this optimization algorithm, combined with a vocabulary of constraints that define optimal sets, allows for the quick and rigorous assessment and maximization of the internal and external validity of experimental items. In doing so, the algorithm facilitates research using factorial, multiple/mixed-effects regression, and other experimental designs. We demonstrate the use of SOS with a case study and discuss other research situations that could benefit from this tool. Support for the generality of the algorithm is demonstrated through Monte Carlo simulations on a range of optimization problems faced by psychologists. The software implementation of SOS and a user manual are provided free of charge for academic purposes as precompiled binaries and MATLAB source files at http://sos.cnbc.cmu.edu.

摘要

实验中使用的刺激物的特征对实验可以解决的理论问题起着至关重要的作用。然而,用于选择最佳项目集的方法支持相对较少,大多数研究人员仍然手动进行此过程。在这项研究中,我们提出了 SOS,这是一种用于刺激随机优化的算法和软件包。SOS 的灵感来自于一种简单的手动刺激选择启发式方法,该方法已经被形式化并作为随机松弛搜索进行了细化。该算法可以快速可靠地选择一组可能的刺激物,这些刺激物可以最佳地满足实验者施加的约束。这使得实验者可以专注于选择适合其理论问题的优化问题,并且避免了手动选择刺激物的繁琐任务。我们详细介绍了这种优化算法,以及定义最佳集的约束词汇表,如何快速而严格地评估和最大化实验项目的内部和外部有效性。通过这种方式,该算法促进了基于因子、多元/混合效应回归和其他实验设计的研究。我们通过案例研究展示了 SOS 的使用,并讨论了其他可能受益于该工具的研究情况。通过对心理学家面临的一系列优化问题进行的蒙特卡罗模拟,证明了该算法的通用性。SOS 的软件实现和用户手册作为预编译的二进制文件和 MATLAB 源文件在 http://sos.cnbc.cmu.edu 上免费提供给学术用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验