Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557-0575, USA.
J Physiol. 2012 Apr 15;590(8):1921-41. doi: 10.1113/jphysiol.2011.222414. Epub 2012 Feb 20.
Adenosine 5′-triphosphate (ATP) has long been considered to be the purine inhibitory neurotransmitter in gastrointestinal (GI) muscles, but recent studies indicate that another purine nucleotide, β-nicotinamide adenine dinucleotide (β-NAD(+)), meets pre- and postsynaptic criteria for a neurotransmitter better than ATP in primate and murine colons. Using a small-volume superfusion assay and HPLC with fluorescence detection and intracellular microelectrode techniques we compared β-NAD(+) and ATP metabolism and postjunctional effects of the primary extracellular metabolites of β-NAD(+) and ATP, namely ADP-ribose (ADPR) and ADP in colonic muscles from cynomolgus monkeys and wild-type (CD38(+/+)) and CD38(−/−) mice. ADPR and ADP caused membrane hyperpolarization that, like nerve-evoked inhibitory junctional potentials (IJPs), were inhibited by apamin. IJPs and hyperpolarization responses to ADPR, but not ADP, were inhibited by the P2Y1 receptor antagonist (1R,2S,4S,5S)-4-[2-iodo-6-(methylamino)-9H-purin-9-yl]-2-(phosphonooxy)bicyclo[3.1.0]hexane-1-methanol dihydrogen phosphate ester tetraammonium salt (MRS2500). Degradation of β-NAD(+) and ADPR was greater per unit mass in muscles containing only nerve processes than in muscles also containing myenteric ganglia. Thus, mechanisms for generation of ADPR from β-NAD(+) and for termination of the action of ADPR are likely to be present near sites of neurotransmitter release. Degradation of β-NAD(+) to ADPR and other metabolites appears to be mediated by pathways besides CD38, the main NAD-glycohydrolase in mammals. Degradation of β-NAD(+) and ATP were equal in colon. ADPR like its precursor, β-NAD(+), mimicked the effects of the endogenous purine neurotransmitter in primate and murine colons. Taken together, our observations support a novel hypothesis in which multiple purines contribute to enteric inhibitory regulation of gastrointestinal motility.
三磷酸腺苷(ATP)长期以来一直被认为是胃肠道(GI)肌肉中的嘌呤抑制性神经递质,但最近的研究表明,另一种嘌呤核苷酸,β-烟酰胺腺嘌呤二核苷酸(β-NAD(+)),在灵长类动物和鼠类结肠中,比 ATP 更符合突触前和突触后神经递质的标准。使用小体积超滤液测定法和 HPLC 与荧光检测和细胞内微电极技术,我们比较了 β-NAD(+)和 ATP 代谢以及 β-NAD(+)和 ATP 的主要细胞外代谢物 ADP-核糖(ADPR)和 ADP 在食蟹猴结肠肌肉中的突触后效应,以及野生型(CD38(+/+))和 CD38(−/−)小鼠。ADPR 和 ADP 引起膜超极化,类似于神经诱导的抑制性突触后电位(IJPs),被蜂毒肽抑制。IJP 和 ADPR 引起的超极化反应,但不是 ADP 引起的超极化反应,被 P2Y1 受体拮抗剂(1R,2S,4S,5S)-4-[2-碘-6-(甲氨基)-9H-嘌呤-9-基]-2-(膦酸氧基)双环[3.1.0]己烷-1-甲醇二氢磷酸盐四氨盐(MRS2500)抑制。在仅含有神经过程的肌肉中,β-NAD(+)和 ADPR 的降解量比同时含有肌间神经节的肌肉中每单位质量的降解量更大。因此,从β-NAD(+)生成 ADPR 的机制和 ADPR 作用的终止机制可能存在于神经递质释放部位附近。β-NAD(+)降解为 ADPR 和其他代谢物的途径似乎除了 CD38 之外还有其他途径,CD38 是哺乳动物中主要的 NAD-糖基水解酶。β-NAD(+)和 ATP 在结肠中的降解程度相等。ADPR 与其前体 β-NAD(+)一样,模拟了内源性嘌呤神经递质在灵长类和鼠类结肠中的作用。综上所述,我们的观察结果支持了一种新的假说,即多种嘌呤有助于胃肠道运动的肠抑制调节。