Suppr超能文献

表达嗜热链球菌 CHCC1524 组氨酸脱羧途径的乳球菌耐酸性得到提高。

Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524.

机构信息

Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 A6, The Netherlands.

出版信息

J Biol Chem. 2012 Mar 30;287(14):11195-204. doi: 10.1074/jbc.M111.330704. Epub 2012 Feb 17.

Abstract

Degradative amino acid decarboxylation pathways in bacteria generate secondary metabolic energy and provide resistance against acid stress. The histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524 was functionally expressed in the heterologous host Lactococcus lactis NZ9000, and the benefits of the newly acquired pathway for the host were analyzed. During growth in M17 medium in the pH range of 5-6.5, a small positive effect was observed on the biomass yield in batch culture, whereas no growth rate enhancement was evident. In contrast, a strong benefit for the engineered L. lactis strain was observed in acid stress survival. In the presence of histidine, the pathway enabled cells to survive at pH values as low as 3 for at least 2 h, conditions under which the host cells were rapidly dying. The flux through the histidine decarboxylation pathway in cells grown at physiological pH was under strict control of the electrochemical proton gradient (pmf) across the membrane. Ionophores that dissipated the membrane potential (ΔΨ) and/or the pH gradient (ΔpH) strongly increased the flux, whereas the presence of glucose almost completely inhibited the flux. Control of the pmf over the flux was exerted by both ΔΨ and ΔpH and was distributed over the transporter HdcP and the decarboxylase HdcA. The control allowed for a synergistic effect between the histidine decarboxylation and glycolytic pathways in acid stress survival. In a narrow pH range around 2.5 the synergism resulted in a 10-fold higher survival rate.

摘要

细菌中降解性氨基酸脱羧途径可产生次生代谢能,并提供抗酸应激能力。嗜热链球菌 CHCC1524 的组氨酸脱羧途径在异源宿主乳球菌 NZ9000 中得到功能性表达,并分析了宿主新获得途径的益处。在 M17 培养基中生长时,在 pH 值为 5-6.5 的范围内,分批培养的生物量产率略有正效应,而没有明显的生长速率增强。相比之下,工程化乳球菌菌株在酸应激存活方面具有很强的优势。在存在组氨酸的情况下,该途径使细胞能够在 pH 值低至 3 的条件下至少存活 2 小时,而在这种条件下,宿主细胞迅速死亡。在生理 pH 值下生长的细胞中,组氨酸脱羧途径的通量受到膜两侧电化学质子梯度 (pmf) 的严格控制。破坏膜电位 (ΔΨ) 和/或 pH 梯度 (ΔpH) 的离子载体强烈增加了通量,而葡萄糖的存在几乎完全抑制了通量。pmf 对通量的控制是由 ΔΨ 和 ΔpH 共同作用的,并分布在转运蛋白 HdcP 和脱羧酶 HdcA 上。这种控制允许在酸应激存活中组氨酸脱羧和糖酵解途径之间产生协同作用。在 pH 值为 2.5 左右的狭窄范围内,协同作用导致存活率提高了 10 倍。

相似文献

2
HdcB, a novel enzyme catalysing maturation of pyruvoyl-dependent histidine decarboxylase.
Mol Microbiol. 2011 Feb;79(4):861-71. doi: 10.1111/j.1365-2958.2010.07492.x. Epub 2011 Jan 5.
3
Effect of chemico-physical parameters on the histidine decarboxylase (HdcA) enzymatic activity in Streptococcus thermophilus PRI60.
J Food Sci. 2012 Apr;77(4):M231-7. doi: 10.1111/j.1750-3841.2012.02628.x. Epub 2012 Mar 19.
6
ArcD1 and ArcD2 Arginine/Ornithine Exchangers Encoded in the Arginine Deiminase Pathway Gene Cluster of Lactococcus lactis.
J Bacteriol. 2015 Nov;197(22):3545-53. doi: 10.1128/JB.00526-15. Epub 2015 Aug 31.
7
Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
Microb Cell Fact. 2019 Aug 13;18(1):136. doi: 10.1186/s12934-019-1188-8.
9
Control of tyramine and histamine accumulation by lactic acid bacteria using bacteriocin forming lactococci.
Int J Food Microbiol. 2014 Nov 3;190:14-23. doi: 10.1016/j.ijfoodmicro.2014.08.023. Epub 2014 Aug 21.
10
Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
J Appl Microbiol. 2006 Jun;100(6):1364-72. doi: 10.1111/j.1365-2672.2006.02867.x.

引用本文的文献

1
In situ monitoring of Lentilactobacillus parabuchneri biofilm formation via real-time infrared spectroscopy.
NPJ Biofilms Microbiomes. 2022 Nov 19;8(1):92. doi: 10.1038/s41522-022-00353-5.
5
Microbial response to acid stress: mechanisms and applications.
Appl Microbiol Biotechnol. 2020 Jan;104(1):51-65. doi: 10.1007/s00253-019-10226-1. Epub 2019 Nov 26.
7
8
Technological Factors Affecting Biogenic Amine Content in Foods: A Review.
Front Microbiol. 2016 Aug 12;7:1218. doi: 10.3389/fmicb.2016.01218. eCollection 2016.
9
Stress Physiology of Lactic Acid Bacteria.
Microbiol Mol Biol Rev. 2016 Jul 27;80(3):837-90. doi: 10.1128/MMBR.00076-15. Print 2016 Sep.
10
Computational models for monitoring the trans-membrane potential with fluorescent probes: the DiSC(5) case.
Eur Biophys J. 2016 Dec;45(8):815-830. doi: 10.1007/s00249-016-1126-1. Epub 2016 Apr 11.

本文引用的文献

1
Characterization of the tyramine-producing pathway in Sporolactobacillus sp. P3J.
Microbiology (Reading). 2011 Jun;157(Pt 6):1841-1849. doi: 10.1099/mic.0.046367-0. Epub 2011 Mar 17.
3
HdcB, a novel enzyme catalysing maturation of pyruvoyl-dependent histidine decarboxylase.
Mol Microbiol. 2011 Feb;79(4):861-71. doi: 10.1111/j.1365-2958.2010.07492.x. Epub 2011 Jan 5.
4
Biogenic amines in fermented foods.
Eur J Clin Nutr. 2010 Nov;64 Suppl 3:S95-100. doi: 10.1038/ejcn.2010.218.
6
Origin of the putrescine-producing ability of the coagulase-negative bacterium Staphylococcus epidermidis 2015B.
Appl Environ Microbiol. 2010 Aug;76(16):5570-6. doi: 10.1128/AEM.00441-10. Epub 2010 Jun 25.
7
Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival.
Biochem Cell Biol. 2010 Apr;88(2):301-14. doi: 10.1139/o09-182.
8
Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine.
J Appl Microbiol. 2009 Dec 1;107(6):1894-902. doi: 10.1111/j.1365-2672.2009.04371.x. Epub 2009 May 5.
10
Lysine decarboxylase of Vibrio parahaemolyticus: kinetics of transcription and role in acid resistance.
J Appl Microbiol. 2008 May;104(5):1283-93. doi: 10.1111/j.1365-2672.2007.03652.x. Epub 2007 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验