Suppr超能文献

相似文献

4
Vocal fold contact pressure in a three-dimensional body-cover phonation model.
J Acoust Soc Am. 2019 Jul;146(1):256. doi: 10.1121/1.5116138.
5
Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation.
J Voice. 2006 Sep;20(3):401-13. doi: 10.1016/j.jvoice.2005.08.003. Epub 2005 Nov 21.
6
Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics.
J Acoust Soc Am. 2010 Feb;127(2):1014-31. doi: 10.1121/1.3277165.
7
A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
Laryngoscope. 2005 Sep;115(9):1646-54. doi: 10.1097/01.mlg.0000175068.25914.61.
8
Phonation threshold power in ex vivo laryngeal models.
J Voice. 2011 Sep;25(5):519-25. doi: 10.1016/j.jvoice.2010.04.001. Epub 2010 Sep 2.
9
Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
J Acoust Soc Am. 2016 May;139(5):2372. doi: 10.1121/1.4947044.

引用本文的文献

1
A Deep Neural Network Based Glottal Flow Model for Predicting Fluid-Structure Interactions during Voice Production.
Appl Sci (Basel). 2020 Jan 2;10(2). doi: 10.3390/app10020705. Epub 2020 Jan 19.
2
Impact of Vertical Stiffness Gradient on the Maximum Divergence Angle.
Laryngoscope. 2021 Jun;131(6):E1934-E1940. doi: 10.1002/lary.29345. Epub 2020 Dec 31.
3
Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy.
PLoS One. 2017 Nov 9;12(11):e0187486. doi: 10.1371/journal.pone.0187486. eCollection 2017.
4
A finite element study on the cause of vocal fold vertical stiffness variation.
J Acoust Soc Am. 2017 Apr;141(4):EL351. doi: 10.1121/1.4978363.
5
Non-stationary Bayesian estimation of parameters from a body cover model of the vocal folds.
J Acoust Soc Am. 2016 May;139(5):2683. doi: 10.1121/1.4948755.
6
Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
J Acoust Soc Am. 2016 May;139(5):2372. doi: 10.1121/1.4947044.
7
Development of a time-dependent numerical model for the assessment of non-stationary pharyngoesophageal tissue vibrations after total laryngectomy.
Biomech Model Mechanobiol. 2015 Jan;14(1):169-84. doi: 10.1007/s10237-014-0597-1. Epub 2014 May 27.

本文引用的文献

2
Optical reconstruction of high-speed surface dynamics in an uncontrollable environment.
IEEE Trans Med Imaging. 2010 Dec;29(12):1979-91. doi: 10.1109/TMI.2010.2055578.
3
Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics.
J Acoust Soc Am. 2010 Feb;127(2):1014-31. doi: 10.1121/1.3277165.
4
Gradation of stiffness of the mucosa inferior to the vocal fold.
J Voice. 2010 May;24(3):359-62. doi: 10.1016/j.jvoice.2008.09.009. Epub 2009 Mar 20.
6
How does cricotracheal resection affect the female voice?
Ann Otol Rhinol Laryngol. 2008 Feb;117(2):85-9. doi: 10.1177/000348940811700202.
7
The shear modulus of the human vocal fold in a transverse direction.
J Voice. 2009 Mar;23(2):151-5. doi: 10.1016/j.jvoice.2007.09.006. Epub 2008 Jan 22.
8
Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution.
Folia Phoniatr Logop. 2008;60(1):33-44. doi: 10.1159/000111802. Epub 2007 Nov 30.
9
Glottal airflow resistance in excised pig, sheep, and cow larynges.
J Voice. 2009 Jan;23(1):40-50. doi: 10.1016/j.jvoice.2007.03.007. Epub 2007 Nov 19.
10
Extracting physiologically relevant parameters of vocal folds from high-speed video image series.
IEEE Trans Biomed Eng. 2007 May;54(5):794-801. doi: 10.1109/TBME.2006.889182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验