Suppr超能文献

SAINT-MS1:使用亲和纯化-质谱实验中的无标记强度数据进行蛋白质-蛋白质相互作用评分。

SAINT-MS1: protein-protein interaction scoring using label-free intensity data in affinity purification-mass spectrometry experiments.

机构信息

Saw Swee Hock School of Public Health, National University of Singapore, Singapore.

出版信息

J Proteome Res. 2012 Apr 6;11(4):2619-24. doi: 10.1021/pr201185r. Epub 2012 Mar 2.

Abstract

We present a statistical method SAINT-MS1 for scoring protein-protein interactions based on the label-free MS1 intensity data from affinity purification-mass spectrometry (AP-MS) experiments. The method is an extension of Significance Analysis of INTeractome (SAINT), a model-based method previously developed for spectral count data. We reformulated the statistical model for log-transformed intensity data, including adequate treatment of missing observations, that is, interactions identified in some but not all replicate purifications. We demonstrate the performance of SAINT-MS1 using two recently published data sets: a small LTQ-Orbitrap data set with three replicate purifications of single human bait protein and control purifications and a larger drosophila data set targeting insulin receptor/target of rapamycin signaling pathway generated using an LTQ-FT instrument. Using the drosophila data set, we also compare and discuss the performance of SAINT analysis based on spectral count and MS1 intensity data in terms of the recovery of orthologous and literature-curated interactions. Given rapid advances in high mass accuracy instrumentation and intensity-based label-free quantification software, we expect that SAINT-MS1 will become a useful tool allowing improved detection of protein interactions in label-free AP-MS data, especially in the low abundance range.

摘要

我们提出了一种基于亲和纯化质谱(AP-MS)实验无标记 MS1 强度数据的蛋白质-蛋白质相互作用评分的统计方法 SAINT-MS1。该方法是基于谱计数数据的 Significance Analysis of INTeractome(SAINT)的扩展。我们重新制定了对数转换强度数据的统计模型,包括对缺失观测值的适当处理,即,在一些但不是所有重复纯化中鉴定到的相互作用。我们使用两个最近发表的数据集来演示 SAINT-MS1 的性能:一个具有三个重复纯化的单个人类诱饵蛋白和对照纯化的 LTQ-Orbitrap 小数据集,以及一个使用 LTQ-FT 仪器生成的针对胰岛素受体/雷帕霉素信号通路的更大的果蝇数据集。使用果蝇数据集,我们还比较和讨论了基于谱计数和 MS1 强度数据的 SAINT 分析在回收同源和文献策交互作用方面的性能。鉴于高质量精度仪器和基于强度的无标记定量软件的快速发展,我们预计 SAINT-MS1 将成为一种有用的工具,可提高无标记 AP-MS 数据中蛋白质相互作用的检测能力,特别是在低丰度范围内。

相似文献

2
Analyzing protein-protein interactions from affinity purification-mass spectrometry data with SAINT.
Curr Protoc Bioinformatics. 2012 Sep;Chapter 8:8.15.1-8.15.23. doi: 10.1002/0471250953.bi0815s39.
3
SAINT: probabilistic scoring of affinity purification-mass spectrometry data.
Nat Methods. 2011 Jan;8(1):70-3. doi: 10.1038/nmeth.1541. Epub 2010 Dec 5.
5
Data Independent Acquisition analysis in ProHits 4.0.
J Proteomics. 2016 Oct 21;149:64-68. doi: 10.1016/j.jprot.2016.04.042. Epub 2016 Apr 29.
6
ROCS: a reproducibility index and confidence score for interaction proteomics studies.
BMC Bioinformatics. 2012 Jun 8;13:128. doi: 10.1186/1471-2105-13-128.
7
The CRAPome: a contaminant repository for affinity purification-mass spectrometry data.
Nat Methods. 2013 Aug;10(8):730-6. doi: 10.1038/nmeth.2557. Epub 2013 Jul 7.
8
Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions.
Nat Protoc. 2014 Nov;9(11):2539-54. doi: 10.1038/nprot.2014.164. Epub 2014 Oct 2.
9
Mapping Protein-Protein Interactions Using Affinity Purification and Mass Spectrometry.
Methods Mol Biol. 2017;1610:231-249. doi: 10.1007/978-1-4939-7003-2_15.

引用本文的文献

1
OTULIN Interactome Reveals Immune Response and Autophagy Associated with Tauopathy in a Mouse Model.
bioRxiv. 2025 Feb 8:2025.02.07.636114. doi: 10.1101/2025.02.07.636114.
2
4
Co-fractionation-mass spectrometry to characterize native mitochondrial protein assemblies in mammalian neurons and brain.
Nat Protoc. 2023 Dec;18(12):3918-3973. doi: 10.1038/s41596-023-00901-z. Epub 2023 Nov 20.
7
Structural dynamics shape the fitness window of alanine:glyoxylate aminotransferase.
Protein Sci. 2022 May;31(5):e4303. doi: 10.1002/pro.4303.
8
The emerging role of mass spectrometry-based proteomics in drug discovery.
Nat Rev Drug Discov. 2022 Sep;21(9):637-654. doi: 10.1038/s41573-022-00409-3. Epub 2022 Mar 29.
9
PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC.
Nat Commun. 2021 Oct 19;12(1):6078. doi: 10.1038/s41467-021-26360-2.
10
Defining the Caprin-1 Interactome in Unstressed and Stressed Conditions.
J Proteome Res. 2021 Jun 4;20(6):3165-3178. doi: 10.1021/acs.jproteome.1c00016. Epub 2021 May 3.

本文引用的文献

3
Analysis of the human endogenous coregulator complexome.
Cell. 2011 May 27;145(5):787-99. doi: 10.1016/j.cell.2011.05.006.
4
Global quantification of mammalian gene expression control.
Nature. 2011 May 19;473(7347):337-42. doi: 10.1038/nature10098.
5
SAINT: probabilistic scoring of affinity purification-mass spectrometry data.
Nat Methods. 2011 Jan;8(1):70-3. doi: 10.1038/nmeth.1541. Epub 2010 Dec 5.
6
Modeling contaminants in AP-MS/MS experiments.
J Proteome Res. 2011 Feb 4;10(2):886-95. doi: 10.1021/pr100795z. Epub 2010 Dec 31.
8
A global protein kinase and phosphatase interaction network in yeast.
Science. 2010 May 21;328(5981):1043-6. doi: 10.1126/science.1176495.
9
Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions.
J Cell Biol. 2010 May 17;189(4):739-54. doi: 10.1083/jcb.200911091.
10
IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation.
Mol Cell Proteomics. 2010 Jan;9(1):131-44. doi: 10.1074/mcp.M900177-MCP200. Epub 2009 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验