Suppr超能文献

SAINT:基于概率的亲和纯化-质谱数据评分。

SAINT: probabilistic scoring of affinity purification-mass spectrometry data.

机构信息

Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Nat Methods. 2011 Jan;8(1):70-3. doi: 10.1038/nmeth.1541. Epub 2010 Dec 5.

Abstract

We present 'significance analysis of interactome' (SAINT), a computational tool that assigns confidence scores to protein-protein interaction data generated using affinity purification-mass spectrometry (AP-MS). The method uses label-free quantitative data and constructs separate distributions for true and false interactions to derive the probability of a bona fide protein-protein interaction. We show that SAINT is applicable to data of different scales and protein connectivity and allows transparent analysis of AP-MS data.

摘要

我们提出了“互作组学分析”(SAINT),这是一种计算工具,用于为使用亲和纯化-质谱(AP-MS)生成的蛋白质-蛋白质相互作用数据分配置信分数。该方法使用无标记定量数据,并为真实和虚假相互作用构建单独的分布,以得出真实蛋白质-蛋白质相互作用的概率。我们表明,SAINT 适用于不同规模和蛋白质连通性的数据,并允许对 AP-MS 数据进行透明分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b233/3064265/3dc01b90952d/nihms252278f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验