School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
J Proteome Res. 2012 Apr 6;11(4):2331-46. doi: 10.1021/pr201025m. Epub 2012 Mar 8.
Despite decades of intensive research, there is still no effective treatment for ischemia/reperfusion (I/R) injury, an important corollary in the treatment of ischemic disease. I/R injury is initiated when the altered biochemistry of cells after ischemia is no longer compatible with oxygenated microenvironment (or reperfusion). To better understand the molecular basis of this alteration and subsequent incompatibility, we assessed the temporal and quantitative alterations in the cardiac proteome of a mouse cardiac I/R model by an iTRAQ approach at 30 min of ischemia, and at 60 or 120 min reperfusion after the ischemia using sham-operated mouse heart as the baseline control. Of the 509 quantified proteins identified, 121 proteins exhibited significant changes (p-value<0.05) over time and were mostly clustered in eight functional groups: Fatty acid oxidation, Glycolysis, TCA cycle, ETC (electron transport chain), Redox Homeostasis, Glutathione S-transferase, Apoptosis related, and Heat Shock proteins. The first four groups are intimately involved in ATP production and the last four groups are known to be important in cellular antioxidant activity. During ischemia and reperfusion, the short supply of oxygen precipitates a pivotal metabolic switch from aerobic metabolism involving fatty acid oxidation, TCA, and phosphorylation to anaerobic metabolism for ATP production and this, in turn, increases reactive oxygen species (ROS) formation. Therefore the implication of these 8 functional groups suggested that ischemia-reperfusion injury is underpinned in part by proteomic alterations. Reversion of these alterations to preischemia levels took at least 60 min, suggesting a refractory period in which the ischemic cells cannot adjust to the presence of oxygen. Therefore, therapeutics that could compensate for these proteomic alterations during this interim refractory period could alleviate ischemia-reperfusion injury to enhance cellular recovery from an ischemic to a normoxic microenvironment. Among the perturbed proteins, Park7 and Ppia were selected for further investigation of their functions under hypoxia. The results show that Park7 plays a key role in regulating antioxidative stress and cell survival, and Ppia may function in coping with the unfolded protein stress in the I/R condition.
尽管经过几十年的深入研究,对于缺血/再灌注(I/R)损伤这种缺血性疾病治疗中的重要并发症,目前仍没有有效的治疗方法。当细胞的生化改变在缺血后不再与含氧的微环境(或再灌注)兼容时,I/R 损伤就开始了。为了更好地理解这种改变及其随后的不兼容性的分子基础,我们采用 iTRAQ 方法,在缺血 30 分钟时、缺血后 60 或 120 分钟再灌注时,评估了小鼠心脏 I/R 模型的心脏蛋白质组的时间和定量变化,以假手术处理的小鼠心脏作为基线对照。在鉴定的 509 个定量蛋白中,有 121 个蛋白的表达随时间发生显著变化(p 值<0.05),并主要聚类在 8 个功能组中:脂肪酸氧化、糖酵解、三羧酸循环、ETC(电子传递链)、氧化还原稳态、谷胱甘肽 S-转移酶、凋亡相关和热休克蛋白。前 4 个组密切参与 ATP 的产生,后 4 个组已知在细胞抗氧化活性中非常重要。在缺血和再灌注期间,氧气供应不足会引发从涉及脂肪酸氧化、三羧酸和磷酸化的有氧代谢到产生 ATP 的无氧代谢的关键代谢转变,这反过来又会增加活性氧(ROS)的形成。因此,这 8 个功能组的含义表明,缺血再灌注损伤部分是由蛋白质组改变引起的。要使这些改变恢复到缺血前的水平至少需要 60 分钟,这表明存在一个难治期,在这个时期,缺血细胞无法适应氧气的存在。因此,在这个中间难治期内,可以补偿这些蛋白质组改变的治疗方法,可以减轻缺血再灌注损伤,促进细胞从缺血到正常氧微环境的恢复。在失调的蛋白中,选择 Park7 和 Ppia 进一步研究它们在缺氧下的功能。结果表明,Park7 在调节抗氧化应激和细胞存活方面起着关键作用,而 Ppia 可能在 I/R 条件下应对未折叠蛋白应激方面发挥作用。