Department of Microbiology & Parasitology, University of Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain.
Curr Top Med Chem. 2012;12(8):927-60. doi: 10.2174/156802612800166819.
Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) models have been largely used for different kind of problems in Medicinal Chemistry and other Biosciences as well. Nevertheless, the applications of QSAR models have been restricted to the study of small molecules in the past. In this context, many authors use molecular graphs, atoms (nodes) connected by chemical bonds (links) to represent and numerically characterize the molecular structure. On the other hand, Complex Networks are useful in solving problems in drug research and industry, developing mathematical representations of different systems. These systems move in a wide range from relatively simple graph representations of drug molecular structures (molecular graphs used in classic QSAR) to large systems. We can cite for instance, drug-target interaction networks, protein structure networks, protein interaction networks (PINs), or drug treatment in large geographical disease spreading networks. In any case, all complex networks have essentially the same components: nodes (atoms, drugs, proteins, microorganisms and/or parasites, geographical areas, drug policy legislations, etc.) and links (chemical bonds, drug-target interactions, drug-parasite treatment, drug use, etc.). Consequently, we can use the same type of numeric parameters called Topological Indices (TIs) to describe the connectivity patterns in all these kinds of Complex Networks irrespective the nature of the object they represent and use these TIs to develop QSAR/QSPR models beyond the classic frontiers of drugs small-sized molecules. The goal of this work, in first instance, is to offer a common background to all the manuscripts presented in this special issue. In so doing, we make a review of the most used software and databases, common types of QSAR/QSPR models, and complex networks involving drugs or their targets. In addition, we review both classic TIs that have been used to describe the molecular structure of drugs and/or larger complex networks. In second instance, we use for the first time a Markov chain model to generalize Spectral moments to higher order analogues coined here as the Stochastic Spectral Moments TIs of order k (πk). Lastly, we report for the first time different QSAR/QSPR models for different classes of networks found in drug research, nature, technology, and social-legal sciences using πk values. This work updates our previous reviews Gonzalez-Diaz et al. Curr Top Med Chem. 2007; 7(10): 1015-29 and Gonzalez-Diaz et al. Curr Top Med Chem. 2008; 8(18):1676-90. It has been prepared in response to the kind invitation of the editor Prof. AB Reitz in commemoration of the 10th anniversary of this journal in 2010.
定量构效关系(QSAR/QSPR)模型在药物化学和其他生物科学中也被广泛应用于各种问题。然而,在过去,QSAR 模型的应用仅限于小分子的研究。在这种情况下,许多作者使用分子图,用化学键连接的原子(节点)来表示和数值化描述分子结构。另一方面,复杂网络在解决药物研究和工业中的问题,开发不同系统的数学表示方面非常有用。这些系统的范围很广,从相对简单的药物分子结构的图形表示(经典 QSAR 中使用的分子图)到大型系统。例如,我们可以引用药物-靶标相互作用网络、蛋白质结构网络、蛋白质相互作用网络(PINs)或大型地理疾病传播网络中的药物治疗。在任何情况下,所有复杂网络都具有本质上相同的组成部分:节点(原子、药物、蛋白质、微生物和/或寄生虫、地理区域、药物政策法规等)和链接(化学键、药物-靶标相互作用、药物-寄生虫治疗、药物使用等)。因此,我们可以使用相同类型的数字参数,称为拓扑指数(TIs),来描述所有这些类型的复杂网络中的连接模式,无论它们所代表的对象的性质如何,并使用这些 TIs 来开发超越经典药物小分子边界的 QSAR/QSPR 模型。这项工作的目标首先是为本期特刊中呈现的所有手稿提供一个共同的背景。为此,我们回顾了最常用的软件和数据库、常见类型的 QSAR/QSPR 模型以及涉及药物或其靶标的复杂网络。此外,我们还回顾了用于描述药物分子结构和/或更大复杂网络的经典 TIs。其次,我们首次使用马尔可夫链模型来推广谱矩到更高阶的类似物,这里称为阶数为 k 的随机谱矩 TIs(πk)。最后,我们首次使用 πk 值报告了不同的药物研究、自然、技术和社会法律科学中不同类别的网络的 QSAR/QSPR 模型。这项工作更新了我们之前的评论 Gonzalez-Diaz 等人。Curr Top Med Chem. 2007; 7(10): 1015-29 和 Gonzalez-Diaz 等人。Curr Top Med Chem. 2008; 8(18):1676-90。这是应编辑 AB Reitz 教授的盛情邀请,为纪念该杂志 2010 年创刊 10 周年而编写的。