Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain.
Curr Drug Metab. 2010 May;11(4):379-406. doi: 10.2174/138920010791514225.
In this communication we carry out an in-depth review of a very versatile QSPR-like method. The method name is MARCH-INSIDE (MARkov CHains Ivariants for Network Selection and DEsign) and is a simple but efficient computational approach to the study of QSPR-like problems in biomedical sciences. The method uses the theory of Markov Chains to generate parameters that numerically describe the structure of a system. This approach generates two principal types of parameters Stochastic Topological Indices (sto-TIs). The use of these parameters allows the rapid collection, annotation, retrieval, comparison and mining structures of molecular, macromolecular, supramolecular, and non-molecular systems within large databases. Here, we review and comment by the first time on the several applications of MARCH-INSIDE to predict drugs ADMET, Activity, Metabolizing Enzymes, and Toxico-Proteomics biomarkers discovery. The MARCH-INSIDE models reviewed are: a) drug-tissue distribution profiles, b) assembling drug-tissue complex networks, c) multi-target models for anti-parasite/anti-microbial activity, c) assembling drug-target networks, d) drug toxicity and side effects, e) web-server for drug metabolizing enzymes, f) models in drugs toxico-proteomics. We close the review with some legal remarks related to the use of this class of QSPR-like models.
在本通讯中,我们对一种非常通用的 QSPR 样方法进行了深入回顾。该方法的名称为 MARCH-INSIDE(用于网络选择和设计的 Markov 链变体),是一种用于生物医学科学中 QSPR 样问题研究的简单但有效的计算方法。该方法使用马尔可夫链理论生成数值描述系统结构的参数。这种方法生成两种主要类型的参数:随机拓扑指数(sto-TI)。这些参数的使用允许在大型数据库中快速收集、注释、检索、比较和挖掘分子、大分子、超分子和非分子系统的结构。在这里,我们首次回顾和评论了 MARCH-INSIDE 在预测药物 ADMET、活性、代谢酶和毒蛋白组学生物标志物发现方面的几种应用。所回顾的 MARCH-INSIDE 模型包括:a)药物组织分布谱,b)组装药物组织复合网络,c)抗寄生虫/抗微生物活性的多靶模型,c)组装药物靶标网络,d)药物毒性和副作用,e)药物代谢酶的网络服务器,f)药物毒蛋白组学模型。我们以与使用此类 QSPR 样模型相关的一些法律注意事项结束了综述。