Suppr超能文献

MARCH-INSIDE 综述与复杂网络预测药物:ADMET、抗寄生虫活性、代谢酶和心脏毒性蛋白质组生物标志物。

Review of MARCH-INSIDE & complex networks prediction of drugs: ADMET, anti-parasite activity, metabolizing enzymes and cardiotoxicity proteome biomarkers.

机构信息

Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain.

出版信息

Curr Drug Metab. 2010 May;11(4):379-406. doi: 10.2174/138920010791514225.

Abstract

In this communication we carry out an in-depth review of a very versatile QSPR-like method. The method name is MARCH-INSIDE (MARkov CHains Ivariants for Network Selection and DEsign) and is a simple but efficient computational approach to the study of QSPR-like problems in biomedical sciences. The method uses the theory of Markov Chains to generate parameters that numerically describe the structure of a system. This approach generates two principal types of parameters Stochastic Topological Indices (sto-TIs). The use of these parameters allows the rapid collection, annotation, retrieval, comparison and mining structures of molecular, macromolecular, supramolecular, and non-molecular systems within large databases. Here, we review and comment by the first time on the several applications of MARCH-INSIDE to predict drugs ADMET, Activity, Metabolizing Enzymes, and Toxico-Proteomics biomarkers discovery. The MARCH-INSIDE models reviewed are: a) drug-tissue distribution profiles, b) assembling drug-tissue complex networks, c) multi-target models for anti-parasite/anti-microbial activity, c) assembling drug-target networks, d) drug toxicity and side effects, e) web-server for drug metabolizing enzymes, f) models in drugs toxico-proteomics. We close the review with some legal remarks related to the use of this class of QSPR-like models.

摘要

在本通讯中,我们对一种非常通用的 QSPR 样方法进行了深入回顾。该方法的名称为 MARCH-INSIDE(用于网络选择和设计的 Markov 链变体),是一种用于生物医学科学中 QSPR 样问题研究的简单但有效的计算方法。该方法使用马尔可夫链理论生成数值描述系统结构的参数。这种方法生成两种主要类型的参数:随机拓扑指数(sto-TI)。这些参数的使用允许在大型数据库中快速收集、注释、检索、比较和挖掘分子、大分子、超分子和非分子系统的结构。在这里,我们首次回顾和评论了 MARCH-INSIDE 在预测药物 ADMET、活性、代谢酶和毒蛋白组学生物标志物发现方面的几种应用。所回顾的 MARCH-INSIDE 模型包括:a)药物组织分布谱,b)组装药物组织复合网络,c)抗寄生虫/抗微生物活性的多靶模型,c)组装药物靶标网络,d)药物毒性和副作用,e)药物代谢酶的网络服务器,f)药物毒蛋白组学模型。我们以与使用此类 QSPR 样模型相关的一些法律注意事项结束了综述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验