Suppr超能文献

去除α-异丙基苹果酸合酶的 C 端调节结构域会破坏功能底物的结合。

Removal of the C-terminal regulatory domain of α-isopropylmalate synthase disrupts functional substrate binding.

机构信息

Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand.

出版信息

Biochemistry. 2012 Mar 20;51(11):2289-97. doi: 10.1021/bi201717j. Epub 2012 Mar 6.

Abstract

α-Isopropylmalate synthase (α-IPMS) catalyzes the metal-dependent aldol reaction between α-ketoisovalerate (α-KIV) and acetyl-coenzyme A (AcCoA) to give α-isopropylmalate (α-IPM). This reaction is the first committed step in the biosynthesis of leucine in bacteria. α-IPMS is homodimeric, with monomers consisting of (β/α)(8) barrel catalytic domains fused to a C-terminal regulatory domain, responsible for binding leucine and providing feedback regulation for leucine biosynthesis. In these studies, we demonstrate that removal of the regulatory domain from the α-IPMS enzymes of both Neisseria meningitidis (NmeIPMS) and Mycobacterium tuberculosis (MtuIPMS) results in enzymes that are unable to catalyze the formation of α-IPM, although truncated NmeIPMS was still able to slowly hydrolyze AcCoA. The lack of catalytic activity of these truncation variants was confirmed by complementation studies with Escherichia coli cells lacking the α-IPMS gene, where transformation with the plasmids encoding the truncated α-IPMS enzymes was not able to rescue α-IPMS activity. X-ray crystal structures of both truncation variants reveal that both proteins are dimeric and that the catalytic sites of the proteins are intact, although the divalent metal ion that is thought to be responsible for activating substrate α-KIV is displaced slightly relative to its position in the substrate-bound, wild-type structure. Isothermal titration calorimetry and WaterLOGSY nuclear magnetic resonance experiments demonstrate that although these truncation variants are not able to catalyze the reaction between α-KIV and AcCoA, they are still able to bind the substrate α-KIV. It is proposed that the regulatory domain is crucial for ensuring protein dynamics necessary for competent catalysis.

摘要

α-异丙基苹果酸合酶(α-IPMS)催化依赖金属的醛醇缩合反应,使 α-酮异戊酸(α-KIV)和乙酰辅酶 A(AcCoA)之间发生反应,生成 α-异丙基苹果酸(α-IPM)。该反应是细菌中亮氨酸生物合成的第一步。α-IPMS 是同源二聚体,单体由(β/α)(8)桶催化结构域融合到 C 端调节结构域组成,负责结合亮氨酸并为亮氨酸生物合成提供反馈调节。在这些研究中,我们证明从脑膜炎奈瑟菌(NmeIPMS)和结核分枝杆菌(MtuIPMS)的 α-IPMS 酶中去除调节结构域会导致酶无法催化 α-IPM 的形成,尽管截短的 NmeIPMS 仍能缓慢水解 AcCoA。这些截断变体缺乏催化活性的情况通过与缺乏 α-IPMS 基因的大肠杆菌细胞的互补研究得到了证实,其中编码截短 α-IPMS 酶的质粒转化不能挽救 α-IPMS 活性。两种截断变体的 X 射线晶体结构表明,两种蛋白质都是二聚体,并且蛋白质的催化部位是完整的,尽管被认为负责激活底物 α-KIV 的二价金属离子相对于其在底物结合的野生型结构中的位置略有位移。等温滴定量热法和 WaterLOGSY 核磁共振实验表明,尽管这些截断变体不能催化 α-KIV 和 AcCoA 之间的反应,但它们仍然能够结合底物 α-KIV。据推测,调节结构域对于确保必要的蛋白动力学以实现有效的催化作用至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验