J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
Phys Med Biol. 2012 Mar 7;57(5):1433-57. doi: 10.1088/0031-9155/57/5/1433.
Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values--absorbed dose to a target tissue per nuclear transformation in a source tissue--are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms--were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for the newborn nuclear medicine patient based upon the UF hybrid computational phantom. Photon dose response functions, photon and electron SAFs, and tables of radionuclide S values for the newborn child--both male and female--are given in a series of four electronic annexes available at stacks.iop.org/pmb/57/1433/mmedia. These values can be applied to optimization studies of image quality and stochastic risk for this most vulnerable class of pediatric patients.
估算核医学患者器官的吸收剂量是优化给药剂量和进行随机风险评估的要求。儿科患者,特别是新生儿,代表了患者人群中最需要进行此类优化研究的部分,因为这个患者亚群的组织放射敏感性增强,预期寿命更长。在无法进行全身 CT 成像的情况下,需要基于源组织中每个核转化的放射性核素 S 值(靶组织的吸收剂量)进行基于体模的计算,以进行剂量和风险评估。在这项研究中,基于佛罗里达大学(UF)患者模型系列中的高分辨率混合体素体模,提出了参考新生儿的电子和光子剂量学综合模型。使用辐射输运代码 MCNPX v2.6 为参考男性和女性新生儿组合了光子特定吸收分数(SAF)值。以独特且高效的方式组合了电子 SAF 值,其中器官剂量的碰撞和辐射分量-对于自剂量和交叉剂量项-分别进行了计算。通过本研究中首次报告的剂量-剂量响应函数评估了新生儿骨骼组织的剂量。使用光子和电子 SAF 值来组合一组大约 16 种常见的新生儿分子成像放射性核素的完整 S 值。然后将这些值与 OLINDA/EXM 软件中的值进行了比较。器官自剂量的 S 值比在 0.46 到 1.42 之间,而器官交叉剂量的类似比值在 0.04 到 3.49 之间变化。这些较大的差异主要是由于 OLINDA/EXM 软件中使用的简化新生儿模型中的器官建模过于简单造成的。本研究基于 UF 混合计算体模,为新生儿核医学患者提出了一种全面的内部剂量学模型。给出了新生儿男性和女性的光子剂量响应函数、光子和电子 SAF 值以及放射性核素 S 值表,这些内容以四个电子附件的形式提供,可在 stacks.iop.org/pmb/57/1433/mmedia 上查阅。这些值可应用于对这个最脆弱的儿科患者群体的图像质量和随机风险进行优化研究。