Biomicrofluidics. 2012 Mar;6(1):14107-1410712. doi: 10.1063/1.3673802. Epub 2012 Jan 31.
We have developed a method for studying cellular adhesion by using a custom-designed microfluidic device with parallel non-connected tapered channels. The design enables investigation of cellular responses to a large range of shear stress (ratio of 25) with a single input flow-rate. For each shear stress, a large number of cells are analyzed (500-1500 cells), providing statistically relevant data within a single experiment. Besides adhesion strength measurements, the microsystem presented in this paper enables in-depth analysis of cell detachment kinetics by real-time videomicroscopy. It offers the possibility to analyze adhesion-associated processes, such as migration or cell shape change, within the same experiment. To show the versatility of our device, we examined quantitatively cell adhesion by analyzing kinetics, adhesive strength and migration behaviour or cell shape modifications of the unicellular model cell organism Dictyostelium discoideum at 21 °C and of the human breast cancer cell line MDA-MB-231 at 37 °C. For both cell types, we found that the threshold stresses, which are necessary to detach the cells, follow lognormal distributions, and that the detachment process follows first order kinetics. In addition, for particular conditions' cells are found to exhibit similar adhesion threshold stresses, but very different detachment kinetics, revealing the importance of dynamics analysis to fully describe cell adhesion. With its rapid implementation and potential for parallel sample processing, such microsystem offers a highly controllable platform for exploring cell adhesion characteristics in a large set of environmental conditions and cell types, and could have wide applications across cell biology, tissue engineering, and cell screening.
我们开发了一种使用定制设计的微流控装置研究细胞黏附的方法,该装置具有平行的非连接渐缩通道。该设计可在单个输入流速下研究细胞对大范围剪切应力(比例为 25)的反应。对于每个剪切应力,都会分析大量细胞(500-1500 个细胞),在单个实验中提供具有统计学意义的数据。除了黏附强度测量之外,本文提出的微系统还通过实时视频显微镜实现了细胞脱落动力学的深入分析。它提供了在同一个实验中分析黏附相关过程(例如迁移或细胞形状变化)的可能性。为了展示我们设备的多功能性,我们通过分析动力学、黏附强度和迁移行为或单细胞模型生物盘基网柄菌(Dictyostelium discoideum)和人乳腺癌细胞系 MDA-MB-231 在 21°C 和 37°C 下的细胞形状变化,对细胞黏附进行了定量研究。对于这两种细胞类型,我们发现,使细胞脱落所需的阈值应力遵循对数正态分布,并且脱落过程遵循一级动力学。此外,对于特定条件的细胞,发现它们具有相似的黏附阈值应力,但脱落动力学却非常不同,这表明动态分析对于全面描述细胞黏附至关重要。该微系统具有快速实施和潜在的并行样本处理能力,为在大量环境条件和细胞类型下探索细胞黏附特性提供了一个高度可控的平台,并在细胞生物学、组织工程和细胞筛选等领域具有广泛的应用。