Dept. of Biological Sciences, Vanderbilt Univ., Nashville, TN 37235-1634, USA.
J Neurophysiol. 2012 May;107(10):2624-32. doi: 10.1152/jn.01126.2011. Epub 2012 Feb 22.
Connexin channels mediate electrical synaptic transmission when assembled as cell-to-cell pores at gap junctions and can mediate transmembrane currents when expressed in plasma membranes as hemichannels. They are widely expressed in the vertebrate retina where in electrical synapses they are critical for transmission of visual signals. While the roles of connexins in electrical synapses are well-studied, the function and roles of connexin hemichannels in the nervous system are less well understood. Genetic deletion in zebrafish of connexin (Cx) 55.5 alters horizontal cell feedback to cones, spectral responses, and visual behavior. Here, we have characterized the properties of hemichannel currents in zebrafish retinal horizontal cells and examined the roles of two connexin isoforms, Cx55.5 and Cx52.6, that are coexpressed in these cells. We report that zebrafish horizontal cells express hemichannel currents that conduct inward current at physiological negative potentials and Ca(2+) levels. Manipulation of Cx55.5 and Cx52.6 gene expression in horizontal cells of adult zebrafish revealed that both Cx55.5 and Cx52.6 contribute to hemichannel currents; however, Cx55.5 expression is necessary for high-amplitude currents. Similarly, coexpression of Cx55.5 with Cx52.6 in oocytes increased hemichannel currents in a supra-additive manner. Taken together these results demonstrate that zebrafish horizontal cell hemichannel currents exhibit the functional characteristics necessary to contribute to synaptic feedback at the first visual synapse, that both Cx55.5 and Cx52.6 contribute to hemichannel currents, and that Cx55.5 may have an additional regulatory function enhancing the amplitude of hemichannel currents.
缝隙连接通道在作为细胞间孔组装在缝隙连接时介导电突触传递,并且当在质膜中作为半通道表达时可以介导跨膜电流。它们在脊椎动物视网膜中广泛表达,在电突触中,它们对于视觉信号的传递至关重要。虽然连接蛋白在电突触中的作用已经得到了很好的研究,但连接蛋白半通道在神经系统中的功能和作用还不太清楚。在斑马鱼中敲除连接蛋白(Cx)55.5 会改变水平细胞对锥体的反馈、光谱反应和视觉行为。在这里,我们描述了斑马鱼视网膜水平细胞半通道电流的特性,并研究了两种在这些细胞中共表达的连接蛋白同工型 Cx55.5 和 Cx52.6 的作用。我们报告说,斑马鱼水平细胞表达在生理负电位和 Ca(2+)水平下传导内向电流的半通道电流。在成年斑马鱼水平细胞中操纵 Cx55.5 和 Cx52.6 基因表达表明,Cx55.5 和 Cx52.6 都对半通道电流有贡献;然而,Cx55.5 的表达对于高振幅电流是必要的。同样,在卵母细胞中共同表达 Cx55.5 和 Cx52.6 以超加性方式增加半通道电流。总之,这些结果表明,斑马鱼水平细胞半通道电流表现出在第一个视觉突触处有助于突触反馈的功能特征,Cx55.5 和 Cx52.6 都对半通道电流有贡献,并且 Cx55.5 可能具有增强半通道电流幅度的额外调节功能。