Department of Medical Neurobiology, the Institute of Medical Research, Israel.
J Neurosci. 2012 Feb 22;32(8):2722-33. doi: 10.1523/JNEUROSCI.5221-11.2012.
Drosophila photoreceptor cells use the ubiquitous G-protein-mediated phospholipase C (PLC) cascade to achieve ultimate single-photon sensitivity. This is manifested in the single-photon responses (quantum bumps). In photoreceptor cells, dark activation of G(q)α molecules occurs spontaneously and produces unitary dark events (dark bumps). A high rate of spontaneous G(q)α activation and dark bump production potentially hampers single-photon detection. We found that in wild-type flies the in vivo rate of spontaneous G(q)α activation is very high. Nevertheless, this high rate is not manifested in a substantially high rate of dark bumps. Therefore, it is unclear how phototransduction suppresses dark bump production arising from spontaneous G(q)α activation, while still maintaining high-fidelity representation of single photons. In this study we show that reduced PLC catalytic activity selectively suppressed production of dark bumps but not light-induced bumps. Manipulations of PLC activity using PLC mutant flies and Ca(2+) modulations revealed that a critical level of PLC activity is required to induce bump production. The required minimal level of PLC activity selectively suppressed random production of single G(q)α-activated dark bumps despite a high rate of spontaneous G(q)α activation. This minimal PLC activity level is reliably obtained by photon-induced synchronized activation of several neighboring G(q)α molecules activating several PLC molecules, but not by random activation of single G(q)α molecules. We thus demonstrate how a G-protein-mediated transduction system, with PLC as its target, selectively suppresses its intrinsic noise while preserving reliable signaling.
果蝇感光细胞利用普遍存在的 G 蛋白介导的磷脂酶 C(PLC)级联反应来实现最高的单光子灵敏度。这表现在单光子反应(量子峰)中。在感光细胞中,G(q)α 分子的暗激活自发发生,并产生单位暗事件(暗峰)。自发的 G(q)α 激活和暗峰产生的高速率可能会阻碍单光子检测。我们发现,在野生型果蝇中,体内自发的 G(q)α 激活速率非常高。然而,这种高速率并没有表现为暗峰产生的速率显著提高。因此,不清楚光转导如何抑制自发的 G(q)α 激活引起的暗峰产生,同时仍然保持单光子的高保真度表示。在这项研究中,我们表明降低 PLC 催化活性选择性地抑制了暗峰的产生,但不抑制光诱导的峰的产生。使用 PLC 突变果蝇和 Ca(2+) 调制对 PLC 活性的操作表明,PLC 活性的临界水平是产生峰的必要条件。尽管自发的 G(q)α 激活率很高,但所需的最小 PLC 活性选择性地抑制了单个 G(q)α 激活的暗峰的随机产生。尽管单个 G(q)α 分子的随机激活可以获得更高的 PLC 活性水平,但这种最小 PLC 活性水平可以通过几个相邻的 G(q)α 分子的光子诱导同步激活来可靠地获得,从而激活几个 PLC 分子,但不是通过单个 G(q)α 分子的随机激活来获得。因此,我们证明了 G 蛋白介导的转导系统如何作为其目标的 PLC,选择性地抑制其内在噪声,同时保持可靠的信号传递。