Pumir Alain, Graves Jennifer, Ranganathan Rama, Shraiman Boris I
Laboratoire J. A. Dieudonne, Centre National de la Recherche Scientifique and Université de Nice, 06108 Nice, France.
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10354-9. doi: 10.1073/pnas.0711884105. Epub 2008 Jul 24.
Photoreceptors of Drosophila compound eye employ a G protein-mediated signaling pathway that transduces single photons into transient electrical responses called "quantum bumps" (QB). Although most of the molecular components of this pathway are already known, the system-level understanding of the mechanism of QB generation has remained elusive. Here, we present a quantitative model explaining how QBs emerge from stochastic nonlinear dynamics of the signaling cascade. The model shows that the cascade acts as an "integrate and fire" device and explains how photoreceptors achieve reliable responses to light although keeping low background in the dark. The model predicts the nontrivial behavior of mutants that enhance or suppress signaling and explains the dependence on external calcium, which controls feedback regulation. The results provide insight into physiological questions such as single-photon response efficiency and the adaptation of response to high incident-light level. The system-level analysis enabled by modeling phototransduction provides a foundation for understanding G protein signaling pathways less amenable to quantitative approaches.
果蝇复眼的光感受器采用一种G蛋白介导的信号通路,该通路将单个光子转化为称为“量子突峰”(QB)的瞬态电反应。尽管该通路的大多数分子成分已为人所知,但对QB产生机制的系统层面理解仍不清楚。在此,我们提出一个定量模型,解释QB如何从信号级联的随机非线性动力学中产生。该模型表明,级联起到“积分并触发”装置的作用,并解释了光感受器如何在黑暗中保持低背景的情况下实现对光的可靠反应。该模型预测了增强或抑制信号传导的突变体的非平凡行为,并解释了对控制反馈调节的外部钙的依赖性。这些结果为诸如单光子反应效率和对高入射光水平的反应适应性等生理问题提供了见解。通过对光转导进行建模实现的系统层面分析为理解较难采用定量方法的G蛋白信号通路奠定了基础。