Suppr超能文献

压缩感知技术可加速 1H MR 代谢成象在临床上的应用。

Compressive sensing could accelerate 1H MR metabolic imaging in the clinic.

机构信息

Joint Graduate Program in Biomedical Engineering, UT Arlington and UT Southwestern Medical Center, Dallas, Tex, USA.

出版信息

Radiology. 2012 Mar;262(3):985-94. doi: 10.1148/radiol.11111098.

Abstract

PURPOSE

To retrospectively evaluate the fidelity of magnetic resonance (MR) spectroscopic imaging data preservation at a range of accelerations by using compressed sensing.

MATERIALS AND METHODS

The protocols were approved by the institutional review board of the university, and written informed consent to acquire and analyze MR spectroscopic imaging data was obtained from the subjects prior to the acquisitions. This study was HIPAA compliant. Retrospective application of compressed sensing was performed on 10 clinical MR spectroscopic imaging data sets, yielding 600 voxels from six normal brain data sets, 163 voxels from two brain tumor data sets, and 36 voxels from two prostate cancer data sets for analysis. The reconstructions were performed at acceleration factors of two, three, four, five, and 10 and were evaluated by using the root mean square error (RMSE) metric, metabolite maps (choline, creatine, N-acetylaspartate [NAA], and/or citrate), and statistical analysis involving a voxelwise paired t test and one-way analysis of variance for metabolite maps and ratios for comparison of the accelerated reconstruction with the original case.

RESULTS

The reconstructions showed high fidelity for accelerations up to 10 as determined by the low RMSE (< 0.05). Similar means of the metabolite intensities and hot-spot localization on metabolite maps were observed up to a factor of five, with lack of statistically significant differences compared with the original data. The metabolite ratios of choline to NAA and choline plus creatine to citrate did not show significant differences from the original data for up to an acceleration factor of five in all cases and up to that of 10 for some cases.

CONCLUSION

A reduction of acquisition time by up to 80%, with negligible loss of information as evaluated with clinically relevant metrics, has been successfully demonstrated for hydrogen 1 MR spectroscopic imaging.

摘要

目的

通过使用压缩感知技术,回顾性评估在一系列加速率下磁共振(MR)波谱成像数据的保真度。

材料与方法

该方案获得了大学机构审查委员会的批准,并在采集前获得了研究对象获取和分析 MR 波谱成像数据的书面知情同意书。本研究符合 HIPAA 规定。对 10 个临床 MR 波谱成像数据集进行了压缩感知的回顾性应用,从 6 个正常脑数据集中获得了 600 个体素,从 2 个脑肿瘤数据集中获得了 163 个体素,从 2 个前列腺癌数据集中获得了 36 个体素进行分析。在加速因子为 2、3、4、5 和 10 的情况下进行了重建,并使用均方根误差(RMSE)度量、代谢物图(胆碱、肌酸、N-乙酰天冬氨酸[NAA]和/或柠檬酸盐)以及涉及体素配对 t 检验和代谢物图和比值的单向方差分析的统计分析来评估重建结果,以比较加速重建与原始病例。

结果

重建结果表明,在低 RMSE(<0.05)的情况下,高达 10 的加速率具有高保真度。在高达 5 倍的加速因子下,观察到代谢物强度和代谢物图上热点定位的相似平均值,与原始数据相比,没有统计学上的显著差异。在所有情况下,高达 5 倍的加速因子,在一些情况下高达 10 倍的加速因子,胆碱与 NAA 的比值和胆碱加肌酸与柠檬酸盐的比值与原始数据没有显著差异。

结论

已经成功地证明,氢 1 MR 波谱成像的采集时间可以减少高达 80%,而信息损失可以通过临床相关指标进行评估。

相似文献

1
Compressive sensing could accelerate 1H MR metabolic imaging in the clinic.
Radiology. 2012 Mar;262(3):985-94. doi: 10.1148/radiol.11111098.
2
2-D magnetic resonance spectroscopic imaging of the pediatric brain using compressed sensing.
Pediatr Radiol. 2019 Dec;49(13):1798-1808. doi: 10.1007/s00247-019-04495-1. Epub 2019 Aug 28.
7
Comparison of T(1) and T(2) metabolite relaxation times in glioma and normal brain at 3T.
J Magn Reson Imaging. 2008 Aug;28(2):342-50. doi: 10.1002/jmri.21453.
10
Whole-brain analysis of amyotrophic lateral sclerosis by using echo-planar spectroscopic imaging.
Radiology. 2013 Jun;267(3):851-7. doi: 10.1148/radiol.13121148. Epub 2013 Jan 29.

引用本文的文献

1
Improved phosphorus MRSI acquisition through compressed sensing acceleration combined with low-rank reconstruction.
MAGMA. 2025 Apr;38(2):161-173. doi: 10.1007/s10334-024-01218-y. Epub 2024 Dec 27.
4
The future of MRI in radiation therapy: Challenges and opportunities for the MR community.
Magn Reson Med. 2022 Dec;88(6):2592-2608. doi: 10.1002/mrm.29450. Epub 2022 Sep 21.
5
Whole-brain high-resolution metabolite mapping with 3D compressed-sensing SENSE low-rank H FID-MRSI.
NMR Biomed. 2022 Jan;35(1):e4615. doi: 10.1002/nbm.4615. Epub 2021 Oct 1.
6
Achieving high-resolution H-MRSI of the human brain with compressed-sensing and low-rank reconstruction at 7 Tesla.
J Magn Reson. 2021 Oct;331:107048. doi: 10.1016/j.jmr.2021.107048. Epub 2021 Aug 11.
7
Compressed sensing MRI: a review from signal processing perspective.
BMC Biomed Eng. 2019 Mar 29;1:8. doi: 10.1186/s42490-019-0006-z. eCollection 2019.
9
Accelerated MR spectroscopic imaging-a review of current and emerging techniques.
NMR Biomed. 2021 May;34(5):e4314. doi: 10.1002/nbm.4314. Epub 2020 May 12.
10
Mapping of fatty acid composition with free-breathing MR spectroscopic imaging and compressed sensing.
NMR Biomed. 2021 May;34(5):e4241. doi: 10.1002/nbm.4241. Epub 2020 Jan 3.

本文引用的文献

1
Fast magnetic resonance spectroscopic imaging (MRSI) using wavelet encoding and parallel imaging: in vitro results.
J Magn Reson. 2011 Jul;211(1):45-51. doi: 10.1016/j.jmr.2011.03.019. Epub 2011 Apr 2.
2
Measurement of glycine in the human brain in vivo by 1H-MRS at 3 T: application in brain tumors.
Magn Reson Med. 2011 Sep;66(3):609-18. doi: 10.1002/mrm.22857. Epub 2011 Mar 9.
3
MR spectroscopy and spectroscopic imaging of the brain.
Methods Mol Biol. 2011;711:203-26. doi: 10.1007/978-1-61737-992-5_9.
5
k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI.
Magn Reson Med. 2009 Jan;61(1):103-16. doi: 10.1002/mrm.21757.
6
Compressed sensing for resolution enhancement of hyperpolarized 13C flyback 3D-MRSI.
J Magn Reson. 2008 Jun;192(2):258-64. doi: 10.1016/j.jmr.2008.03.003. Epub 2008 Mar 18.
7
Image coding using wavelet transform.
IEEE Trans Image Process. 1992;1(2):205-20. doi: 10.1109/83.136597.
8
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.
9
Time-domain quantitation of 1H short echo-time signals: background accommodation.
MAGMA. 2004 May;16(6):284-96. doi: 10.1007/s10334-004-0037-9. Epub 2004 May 26.
10
3D MRSI for resected high-grade gliomas before RT: tumor extent according to metabolic activity in relation to MRI.
Int J Radiat Oncol Biol Phys. 2004 May 1;59(1):126-37. doi: 10.1016/j.ijrobp.2003.08.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验