Suppr超能文献

压缩感知磁共振成像:从信号处理角度的综述

Compressed sensing MRI: a review from signal processing perspective.

作者信息

Ye Jong Chul

机构信息

Department of Bio and Brain Engineering, Korea Adv. Inst. of Science & Technology (KAIST), 291 Daehak-ro, Daejeon, Korea.

出版信息

BMC Biomed Eng. 2019 Mar 29;1:8. doi: 10.1186/s42490-019-0006-z. eCollection 2019.

Abstract

Magnetic resonance imaging (MRI) is an inherently slow imaging modality, since it acquires multi-dimensional k-space data through 1-D free induction decay or echo signals. This often limits the use of MRI, especially for high resolution or dynamic imaging. Accordingly, many investigators has developed various acceleration techniques to allow fast MR imaging. For the last two decades, one of the most important breakthroughs in this direction is the introduction of compressed sensing (CS) that allows accurate reconstruction from sparsely sampled k-space data. The recent FDA approval of compressed sensing products for clinical scans clearly reflect the maturity of this technology. Therefore, this paper reviews the basic idea of CS and how this technology have been evolved for various MR imaging problems.

摘要

磁共振成像(MRI)本质上是一种成像速度较慢的模态,因为它通过一维自由感应衰减或回波信号来采集多维k空间数据。这常常限制了MRI的应用,尤其是在高分辨率或动态成像方面。因此,许多研究人员开发了各种加速技术以实现快速磁共振成像。在过去的二十年里,这一方向最重要的突破之一是引入了压缩感知(CS),它能够从稀疏采样的k空间数据中进行精确重建。美国食品药品监督管理局(FDA)最近批准将压缩感知产品用于临床扫描,这清楚地反映了该技术的成熟度。因此,本文回顾了压缩感知的基本思想以及该技术是如何针对各种磁共振成像问题不断发展的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8149/7412677/e1a1e17503f5/42490_2019_6_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验