University of Rochester, Department of Chemistry, Rochester, New York 14627-0216, USA.
J Chem Phys. 2012 Feb 14;136(6):064701. doi: 10.1063/1.3682559.
Multi-exciton generation (MEG), the creation of more than one electron-hole pair per photon absorbed, occurs for excitation energies greater than twice the bandgap (E(g)). Imperfections on the surface of quantum dots, in the form of atomic vacancies or incomplete surface passivation, lead to less than ideal efficiencies for MEG in semiconductor quantum dots. The energetic onset for MEG is computed with and without surface defects for nanocrystals, Pb(4)Se(4), Si(7), and Si(7)H(2). Modeling the correlated motion of two electrons across the bandgap requires a theoretical approach that incorporates many-body effects, such as post-Hartree-Fock quantum chemical methods. We use symmetry-adapted cluster with configuration interaction to study the excited states of nanocrystals and to determine the energetic threshold of MEG. Under laboratory conditions, lead selenide nanocrystals produce multi-excitons at excitation energies of 3 E(g), which is attributed to the large dielectric constant, small Coulomb interaction, and surface defects. In the absence of surface defects the MEG threshold is computed to be 2.6 E(g). For lead selenide nanocrystals with non-bonding selenium valence electrons, Pb(3)Se(4), the MEG threshold increases to 2.9 E(g). Experimental evidence of MEG in passivated silicon quantum dots places the onset of MEG at 2.4 E(g). Our calculations show that the lowest multi-exciton state has an excitation energy of 2.5 E(g), and surface passivation enhances the optical activity of MEG. However, incomplete surface passivation resulting in a neutral radical on the surface drives the MEG threshold to 4.4 E(g). Investigating the mechanism of MEG at the atomistic level provides explanations for experimental discrepancies and suggests ideal materials for photovoltaic conversion.
多激子产生(MEG),即每吸收一个光子产生超过一对电子-空穴对,发生在激发能大于两倍带隙(E(g))的情况下。量子点表面的缺陷,如原子空位或不完全的表面钝化,导致半导体量子点中的 MEG 效率不理想。对于纳米晶体 Pb(4)Se(4)、Si(7)和 Si(7)H(2),我们计算了存在和不存在表面缺陷时 MEG 的能量起始点。要对两个电子跨越带隙的相关运动进行建模,需要采用一种理论方法,该方法需要包含多体效应,如后哈特利-福克量子化学方法。我们使用对称性自适应簇与组态相互作用来研究纳米晶体的激发态,并确定 MEG 的能量阈值。在实验室条件下,硒化铅纳米晶体在 3E(g)的激发能下产生多激子,这归因于大介电常数、小库仑相互作用和表面缺陷。在不存在表面缺陷的情况下,MEG 阈值计算为 2.6E(g)。对于具有非键合硒价电子的 Pb(3)Se(4),MEG 阈值增加到 2.9E(g)。钝化硅量子点中 MEG 的实验证据将 MEG 的起始点置于 2.4E(g)。我们的计算表明,最低的多激子态具有 2.5E(g)的激发能,表面钝化增强了 MEG 的光学活性。然而,不完全的表面钝化导致表面上形成中性自由基,将 MEG 阈值推高至 4.4E(g)。在原子水平上研究 MEG 的机制为实验差异提供了解释,并为光伏转换提供了理想的材料。