Suppr超能文献

重新审视高压下的致密氢。III. 两种竞争效应以及高压下固体氢中分子内 H-H 分离的结果。

A fresh look at dense hydrogen under pressure. III. Two competing effects and the resulting intra-molecular H-H separation in solid hydrogen under pressure.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853, USA.

出版信息

J Chem Phys. 2012 Feb 21;136(7):074503. doi: 10.1063/1.3679749.

Abstract

A preliminary discussion of the general problem of localization of wave functions, and the way it is approached in theoretical condensed matter physics (Wannier functions) and theoretical chemistry (localized or fragment orbitals) is followed by an application of the ideas of Paper II in this series to the structures of hydrogen as they evolve under increasing pressure. The idea that emerges is that of simultaneously operative physical (reduction of available space by an increasingly stiff wall of neighboring molecules) and chemical (depopulation of the σ(g) bonding molecular orbital of H(2), and population of the antibonding σ(u)∗ MO) factors. The two effects work in the same direction of reducing the intermolecular separation as the pressure increases, but compete, working in opposite directions, in their effect on the intramolecular (nearest neighbor, intra-pair) distance. We examine the population of σ(g) and σ(u)∗ MOs in our numerical laboratory, as well as the total electron transfer (small), and polarization (moderate, where allowed by symmetry) of the component H(2) molecules. From a molecular model of two interacting H(2) molecules we find a linear relationship between the electron transfer from σ(g) to σ(u)∗ of a hydrogen molecular fragment and the intramolecular H-H separation, and that, in turn, allows us to estimate the expected bond lengths in H(2) under pressure if the first effect (that of simple confinement) was absent. In essence, the intramolecular H-H separations under pressure are much shorter than they would be, were there no physical/confinement effect. We then use this knowledge to understand how the separate E and PV terms contribute to hydrogen phase changes with increasing pressure.

摘要

首先讨论了波函数定位的一般问题,以及在理论凝聚态物理(Wannier 函数)和理论化学(局域或片段轨道)中解决这一问题的方法,然后将本系列论文 II 的思想应用于氢在压力下的结构演化。由此产生的想法是,同时存在物理因素(相邻分子的刚性壁减少可用空间)和化学因素(H2 的σ(g)成键分子轨道的去占据和反键σ(u)∗MO 的占据)。这两个效应都朝着随着压力增加而减小分子间距离的方向起作用,但在它们对分子内(最近邻、内对)距离的影响上相互竞争,起相反的作用。我们在数值实验室中研究了σ(g)和σ(u)∗MO 的占据情况,以及总电子转移(小)和极化(中等,在对称性允许的情况下)。从两个相互作用的 H2 分子的分子模型中,我们发现了氢分子片段从σ(g)到σ(u)∗的电子转移与分子内 HH 分离之间的线性关系,而这反过来又使我们能够在没有第一效应(即简单约束)的情况下估计氢在压力下的预期键长。本质上,在压力下分子内 HH 分离比没有物理/约束效应时要短得多。然后,我们利用这一知识来理解单独的 E 和 PV 项如何对氢随压力的相变做出贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验