Suppr超能文献

重新审视高压下的致密氢。二、有助于理解 H-H 分离演变的化学和物理模型。

A fresh look at dense hydrogen under pressure. II. Chemical and physical models aiding our understanding of evolving H-H separations.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853, USA.

出版信息

J Chem Phys. 2012 Feb 21;136(7):074502. doi: 10.1063/1.3679736.

Abstract

In order to explain the intricate dance of intramolecular (intra-proton-pair) H-H separations observed in a numerical laboratory of calculationally preferred static hydrogen structures under pressure, we examine two effects through discrete molecular models. The first effect, we call it physical, is of simple confinement. We review a salient model already in the literature, that of LeSar and Herschbach, of a hydrogen molecule in a spheroidal cavity. As a complement, we also study a hydrogen molecule confined along a line between two helium atoms. As the size of the cavity/confining distance decreases (a surrogate for increasing pressure), in both models the equilibrium proton separation decreases and the force constant of the stretching vibration increases. The second effect, which is an orbital or chemical factor, emerges from the electronic structure of the known molecular transition metal complexes of dihydrogen. In these the H-H bond is significantly elongated (and the vibron much decreased in frequency) as a result of depopulation of the σ(g) bonding molecular orbital of H(2), and population of the antibonding σ(u)∗ MO. The general phenomenon, long known in chemistry, is analyzed through a specific molecular model of three hydrogen molecules interacting in a ring, a motif found in some candidate structures for dense hydrogen.

摘要

为了解释在计算上优选的静态氢结构的数值实验室中观察到的分子内(质子对内)H-H 分离的复杂舞蹈,我们通过离散分子模型检查了两个效应。第一个效应,我们称之为物理效应,是简单的限制。我们回顾了文献中已经存在的一个突出模型,即 LeSar 和 Herschbach 关于球形腔中氢分子的模型。作为补充,我们还研究了沿两个氦原子之间的线限制的氢分子。随着腔/限制距离的减小(代表压力增加),在这两个模型中,平衡质子分离减小,伸缩振动的力常数增加。第二个效应是轨道或化学因素,它源于已知的双氢分子过渡金属配合物的电子结构。在这些配合物中,由于 H(2) 的σ(g)成键分子轨道的排空和反键σ(u)∗MO 的占据,H-H 键显著延长(振动频率大大降低)。这一在化学中长期存在的普遍现象,通过三个氢分子在一个环中相互作用的特定分子模型进行了分析,这个环是一些密集氢候选结构中发现的 motif。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验