Laboratoire des Interfaces et Matériaux avancés, Département de Physique, Faculté des Sciences de Monastir Université de Monastir, Avenue de l'Environnement 5019 Monastir, Tunisia.
J Phys Chem A. 2012 Mar 22;116(11):2945-60. doi: 10.1021/jp209106w. Epub 2012 Mar 9.
Adiabatic and diabatic potential energy curves and the permanent and transition dipole moments of the low-lying electronic states of the LiRb molecule dissociating into Rb(5s, 5p, 4d, 6s, 6p, 5d, 7s, 6d) + Li(2s, 2p) have been investigated. The molecular calculations are performed with an ab initio approach based on nonempirical pseudopotentials for Rb(+) and Li(+) cores, parametrized l-dependent core polarization potentials and full configuration interaction calculations. The derived spectroscopic constants (R(e), D(e), T(e), ω(e), ω(e)x(e), and B(e)) of the ground state and lower excited states are in good agreement with the available theoretical works. However, the 8-10(1)Σ(+), 8-10(3)Σ(+), 6(1,3)Π, and 3(1,3)Δ excited states are studied for the first time. In addition, to the potential energy, accurate permanent and transition dipole moments have been determined for a wide interval of internuclear distances. The permanent dipole moment of LiRb has revealed ionic characters both relating to electron transfer and yielding Li(-)Rb(+) and Li(+)Rb(-) arrangements. The diabatic potential energy for the (1,3)Σ(+), (1,3)Π, and (1,3)Δ symmetries has been performed for this molecule for the first time. The diabatization method is based on variational effective Hamiltonian theory and effective metric, where the adiabatic and diabatic states are connected by an appropriate unitary transformation.
已研究了离解为 Rb(5s,5p,4d,6s,6p,5d,7s,6d) + Li(2s,2p)的 LiRb 分子的低电子态的绝热和非绝热势能曲线以及永久和跃迁偶极矩。分子计算是使用基于非经验赝势的从头算方法进行的,用于 Rb(+)和 Li(+)核,参数化 l 相关的核极化势和完全组态相互作用计算。基态和较低激发态的推导光谱常数(R(e)、D(e)、T(e)、ω(e)、ω(e)x(e)和 B(e))与现有理论工作吻合良好。然而,首次研究了 8-10(1)Σ(+)、8-10(3)Σ(+)、6(1,3)Π和 3(1,3)Δ激发态。此外,为广泛的核间距确定了准确的永久和跃迁偶极矩。LiRb 的永久偶极矩表现出离子特征,这与电子转移有关,并产生 Li(-)Rb(+)和 Li(+)Rb(-)排列。首次为该分子进行了(1,3)Σ(+)、(1,3)Π和(1,3)Δ对称性的非绝热势能。二价化方法基于变分有效哈密顿理论和有效度量,其中绝热和非绝热态通过适当的幺正变换连接。