Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-853, Japan.
ACS Nano. 2012 Mar 27;6(3):2261-72. doi: 10.1021/nn2043252. Epub 2012 Mar 6.
We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N(2) gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CN(x)-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N(2) molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS(2), WS(2), etc.
我们报告了一种生产高结晶氮掺杂石墨烯纳米带的新物理化学途径。该技术包括在快速热冲击下,暴露于氮气掺杂多壁碳纳米管(CN(x)-MWNTs)空心核心内的 N2 气体的急剧膨胀。使用分子动力学和密度泛函理论模拟对多壁纳米管的解理机制进行了合理化,这突出了开口纳米管在通过管内和表面缺陷的毛细作用促进 N2 分子有效引入方面的重要性,从而引发了高效且原子平滑的解理。所生产的纳米带可以是少层的(从石墨烯双层开始),并且可以表现出晶态锯齿形和扶手椅边缘。与以前开发的方法相比,我们的技术具有多种优势:(1)管子没有被严重氧化;(2)该方法在所得纳米带中产生锐利的原子边缘;(3)该技术可以从可用的 MWNT 源大规模生产晶态纳米带;(4)该途径最终可用于解理其他类型的碳纳米管或插层层状材料,如 BN、MoS2、WS2 等。