Suppr超能文献

基于低维碳的级联自旋电子逻辑

Cascaded spintronic logic with low-dimensional carbon.

机构信息

Department of Electrical Engineering &Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

Department of Electrical &Computer Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, USA.

出版信息

Nat Commun. 2017 Jun 5;8:15635. doi: 10.1038/ncomms15635.

Abstract

Remarkable breakthroughs have established the functionality of graphene and carbon nanotube transistors as replacements to silicon in conventional computing structures, and numerous spintronic logic gates have been presented. However, an efficient cascaded logic structure that exploits electron spin has not yet been demonstrated. In this work, we introduce and analyse a cascaded spintronic computing system composed solely of low-dimensional carbon materials. We propose a spintronic switch based on the recent discovery of negative magnetoresistance in graphene nanoribbons, and demonstrate its feasibility through tight-binding calculations of the band structure. Covalently connected carbon nanotubes create magnetic fields through graphene nanoribbons, cascading logic gates through incoherent spintronic switching. The exceptional material properties of carbon materials permit Terahertz operation and two orders of magnitude decrease in power-delay product compared to cutting-edge microprocessors. We hope to inspire the fabrication of these cascaded logic circuits to stimulate a transformative generation of energy-efficient computing.

摘要

引人瞩目的突破已经证实,石墨烯和碳纳米管晶体管在传统计算结构中可以作为硅的替代品,并且已经提出了许多自旋电子逻辑门。然而,一种利用电子自旋的高效级联逻辑结构尚未得到证明。在这项工作中,我们引入并分析了一个仅由低维碳材料组成的级联自旋电子计算系统。我们提出了一种基于石墨烯纳米带中发现的负磁阻的自旋电子开关,并通过对能带结构的紧束缚计算证明了其可行性。通过石墨烯纳米带,共价连接的碳纳米管产生磁场,通过非相干自旋电子开关级联逻辑门。碳材料的卓越材料特性允许太赫兹操作,并将与最先进的微处理器相比,将功率延迟乘积降低两个数量级。我们希望激发这些级联逻辑电路的制造,以推动节能计算的变革性发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4df2/5465351/26d61d4e28d9/ncomms15635-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验