Department of Biology, Boston University, Boston, Massachusetts, United States of America.
PLoS One. 2012;7(2):e31622. doi: 10.1371/journal.pone.0031622. Epub 2012 Feb 20.
TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere), TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.
METHODOLOGY/PRINCIPAL FINDINGS: We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.
CONCLUSIONS/SIGNIFICANCE: Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.
TRP 通道作为感觉转导和其他细胞信号通路的关键介质发挥作用。在果蝇中,TRP 和 TRPL 是光感受器中的光激活通道。虽然 TRP 静态地定位于细胞的信号区室(光感受器)中,但 TRPL 的定位受光调节。TRPL 通道在两个不同阶段从光感受器中移位,在黑暗孵育时返回光感受器。TRPL 通道的移位调节其可用性,从而调节信号的增益。然而,对于这种 TRPL 通道的运输机制知之甚少。
方法/主要发现:我们首先研究了从头蛋白质合成在 TRPL 移位中的作用。我们给果蝇喂食环己酰亚胺,验证蛋白质合成的抑制作用,并检测光感受器中 TRPL 的移位。我们发现,蛋白质合成既不参与 TRPL 从光感受器中移位的第一阶段,也不参与第二阶段,但从第一阶段重新定位到光感受器,而不是第二阶段,依赖于蛋白质合成。我们还对一种适合生化和遗传操作的离体眼制剂进行了特征描述。我们使用该制剂来研究第一阶段 TRPL 移位的机制。我们发现,第一阶段的移位:在 ATP 耗竭时被诱导,在肌动蛋白细胞骨架的扰动或内吞作用的抑制下没有改变,并且在膜固醇含量增加时减慢。
结论/意义:我们的结果表明,TRPL 从光感受器中移位很可能是由于蛋白质运输而不是降解/再合成。从每个阶段重新定位到光感受器可能涉及不同的策略。由于 TRPL 通道可以在没有 ATP 的情况下向第一阶段移位,并且对细胞骨架没有主要要求,我们认为第一阶段的移位涉及通过顶膜的简单扩散,这可能受到光感受器中光依赖性锚定物释放的调节。