Suppr超能文献

定义人类发育性语言障碍的遗传结构。

Defining the genetic architecture of human developmental language impairment.

机构信息

The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.

出版信息

Life Sci. 2012 Apr 9;90(13-14):469-75. doi: 10.1016/j.lfs.2012.01.016. Epub 2012 Feb 17.

Abstract

Language is a uniquely human trait, which poses limitations on animal models for discovering biological substrates and pathways. Despite this challenge, rapidly developing biotechnology in the field of genomics has made human genetics studies a viable alternative route for defining the molecular neuroscience of human language. This is accomplished by studying families that transmit both normal and disordered language across generations. The language disorder reviewed here is specific language impairment (SLI), a developmental deficiency in language acquisition despite adequate opportunity, normal intelligence, and without any apparent neurological etiology. Here, we describe disease gene discovery paradigms as applied to SLI families and review the progress this field has made. After review the evidence that genetic factors influence SLI, we discuss methods and findings from scans of the human chromosomes, including the main replicated regions on chromosomes 13, 16 and 19 and two identified genes, ATP2C2 and CMIP that appear to account for the language variation on chromosome 16. Additional work has been done on candidate genes, i.e., genes chosen a priori and not through a genome scanning studies, including several studies of CNTNAP2 and some recent work implicating BDNF as a gene x gene interaction partner of genetic variation on chromosome 13 that influences language. These recent developments may allow for better use of post-mortem human brain samples functional studies and animal models for circumscribed language subcomponents. In the future, the identification of genetic variation associated with language phenotypes will provide the molecular pathways to understanding human language.

摘要

语言是人类独有的特征,这给通过动物模型来发现语言的生物基础和途径带来了限制。尽管面临这一挑战,但基因组学领域快速发展的生物技术使得人类遗传学研究成为定义人类语言分子神经科学的可行替代途径。这是通过研究能够跨代传递正常和异常语言的家族来实现的。这里回顾的语言障碍是特定语言损伤(SLI),这是一种在有足够机会、正常智力且没有明显神经病因的情况下发生的语言习得发育缺陷。在这里,我们描述了应用于 SLI 家族的疾病基因发现范例,并回顾了该领域取得的进展。在回顾了遗传因素影响 SLI 的证据之后,我们讨论了对人类染色体进行扫描的方法和发现,包括染色体 13、16 和 19 上的主要重复区域以及两个已确定的基因 ATP2C2 和 CMIP,它们似乎解释了染色体 16 上的语言变化。候选基因的研究也取得了额外的进展,即通过基因组扫描研究选择的基因,包括几个 CNTNAP2 研究和一些最近的工作表明 BDNF 作为基因 x 基因相互作用伙伴,影响染色体 13 上的遗传变异,从而影响语言。这些最近的发展可能会更好地利用死后人类大脑样本进行功能研究和动物模型来研究语言的特定子成分。未来,与语言表型相关的遗传变异的鉴定将为理解人类语言提供分子途径。

相似文献

1
Defining the genetic architecture of human developmental language impairment.
Life Sci. 2012 Apr 9;90(13-14):469-75. doi: 10.1016/j.lfs.2012.01.016. Epub 2012 Feb 17.
3
A genomewide scan identifies two novel loci involved in specific language impairment.
Am J Hum Genet. 2002 Feb;70(2):384-98. doi: 10.1086/338649. Epub 2002 Jan 4.
4
Genetic and phenotypic effects of phonological short-term memory and grammatical morphology in specific language impairment.
Genes Brain Behav. 2008 Jun;7(4):393-402. doi: 10.1111/j.1601-183X.2007.00364.x. Epub 2007 Nov 12.
5
A major susceptibility locus for specific language impairment is located on 13q21.
Am J Hum Genet. 2002 Jul;71(1):45-55. doi: 10.1086/341095. Epub 2002 Jun 4.
8
CMIP and ATP2C2 modulate phonological short-term memory in language impairment.
Am J Hum Genet. 2009 Aug;85(2):264-72. doi: 10.1016/j.ajhg.2009.07.004. Epub 2009 Jul 30.
9
Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population.
Eur J Hum Genet. 2011 Jun;19(6):687-95. doi: 10.1038/ejhg.2010.251. Epub 2011 Jan 19.

引用本文的文献

2
EARLY CONSIDERATIONS OF GENETICS IN APHASIA REHABILITATION: A NARRATIVE REVIEW.
Aphasiology. 2023;37(6):835-853. doi: 10.1080/02687038.2022.2043234. Epub 2022 Feb 25.
4
8
Behavioral and Molecular Genetics of Reading-Related AM and FM Detection Thresholds.
Behav Genet. 2017 Mar;47(2):193-201. doi: 10.1007/s10519-016-9821-3. Epub 2016 Nov 9.
10
Genome-wide association study of receptive language ability of 12-year-olds.
J Speech Lang Hear Res. 2014 Feb;57(1):96-105. doi: 10.1044/1092-4388(2013/12-0303).

本文引用的文献

1
Disentangling the myriad genomics of complex disorders, specifically focusing on autism, epilepsy, and schizophrenia.
Cytogenet Genome Res. 2011;135(3-4):228-40. doi: 10.1159/000334064. Epub 2011 Nov 12.
2
Dissection of genetic associations with language-related traits in population-based cohorts.
J Neurodev Disord. 2011 Dec;3(4):365-73. doi: 10.1007/s11689-011-9091-6. Epub 2011 Sep 6.
3
On-line individual differences in statistical learning predict language processing.
Front Psychol. 2010 Sep 14;1:31. doi: 10.3389/fpsyg.2010.00031. eCollection 2010.
4
Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations.
Nat Genet. 2011 Jun;43(6):585-9. doi: 10.1038/ng.835. Epub 2011 May 15.
6
DCDC2, KIAA0319 and CMIP are associated with reading-related traits.
Biol Psychiatry. 2011 Aug 1;70(3):237-45. doi: 10.1016/j.biopsych.2011.02.005. Epub 2011 Mar 31.
7
CNTNAP2 variants affect early language development in the general population.
Genes Brain Behav. 2011 Jun;10(4):451-6. doi: 10.1111/j.1601-183X.2011.00684.x. Epub 2011 Mar 1.
8
Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population.
Eur J Hum Genet. 2011 Jun;19(6):687-95. doi: 10.1038/ejhg.2010.251. Epub 2011 Jan 19.
9
Genetic covariation underlying reading, language and related measures in a sample selected for specific language impairment.
Behav Genet. 2011 Sep;41(5):651-9. doi: 10.1007/s10519-010-9435-0. Epub 2010 Dec 31.
10
Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects.
Behav Genet. 2011 Jan;41(1):90-104. doi: 10.1007/s10519-010-9424-3. Epub 2010 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验