Suppr超能文献

有氧 H2 代谢的方式和原因。

The hows and whys of aerobic H2 metabolism.

机构信息

Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, UK.

出版信息

Curr Opin Chem Biol. 2012 Apr;16(1-2):26-34. doi: 10.1016/j.cbpa.2012.01.012. Epub 2012 Feb 25.

Abstract

The bacterial [NiFe]-hydrogenases have been classified as either 'standard' or 'O2-tolerant' based on their ability to function in the presence of O2. Typically, these enzymes contain four redox-active metal centers: a Ni-Fe-CO-2CN- active site and three electron-transferring Fe-S clusters. Recent research suggests that, rather than differences at the catalytic active site, it is a novel Fe-S cluster electron transfer (ET) relay that controls how [NiFe]-hydrogenases recover from O2 attack. In light of recent structural data and mutagenic studies this article reviews the molecular mechanism of O2-tolerance in [NiFe]-hydrogenases and discusses the biosynthesis of the unique Fe-S relay.

摘要

根据在氧气存在下的功能,细菌[NiFe]-氢化酶被分为“标准”或“耐氧”型。通常,这些酶包含四个氧化还原活性金属中心:一个 Ni-Fe-CO-2CN-活性位点和三个电子转移 Fe-S 簇。最近的研究表明,控制[NiFe]-氢化酶如何从 O2 攻击中恢复的不是催化活性位点的差异,而是新型 Fe-S 簇电子转移(ET)中继,该中继控制[NiFe]-氢化酶对 O2 的耐受性。鉴于最近的结构数据和诱变研究,本文综述了[NiFe]-氢化酶耐 O2 性的分子机制,并讨论了独特的 Fe-S 中继的生物合成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验