Suppr超能文献

有氧 H2 代谢的方式和原因。

The hows and whys of aerobic H2 metabolism.

机构信息

Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, UK.

出版信息

Curr Opin Chem Biol. 2012 Apr;16(1-2):26-34. doi: 10.1016/j.cbpa.2012.01.012. Epub 2012 Feb 25.

Abstract

The bacterial [NiFe]-hydrogenases have been classified as either 'standard' or 'O2-tolerant' based on their ability to function in the presence of O2. Typically, these enzymes contain four redox-active metal centers: a Ni-Fe-CO-2CN- active site and three electron-transferring Fe-S clusters. Recent research suggests that, rather than differences at the catalytic active site, it is a novel Fe-S cluster electron transfer (ET) relay that controls how [NiFe]-hydrogenases recover from O2 attack. In light of recent structural data and mutagenic studies this article reviews the molecular mechanism of O2-tolerance in [NiFe]-hydrogenases and discusses the biosynthesis of the unique Fe-S relay.

摘要

根据在氧气存在下的功能,细菌[NiFe]-氢化酶被分为“标准”或“耐氧”型。通常,这些酶包含四个氧化还原活性金属中心:一个 Ni-Fe-CO-2CN-活性位点和三个电子转移 Fe-S 簇。最近的研究表明,控制[NiFe]-氢化酶如何从 O2 攻击中恢复的不是催化活性位点的差异,而是新型 Fe-S 簇电子转移(ET)中继,该中继控制[NiFe]-氢化酶对 O2 的耐受性。鉴于最近的结构数据和诱变研究,本文综述了[NiFe]-氢化酶耐 O2 性的分子机制,并讨论了独特的 Fe-S 中继的生物合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验