Suppr超能文献

使用两个欧洲人群进行前列腺癌全基因组两基因座上位性扫描。

Genome-wide two-locus epistasis scans in prostate cancer using two European populations.

机构信息

Center for Genetic Epidemiology and Prevention, Van Andel Research Institute, Grand Rapids, MI, USA.

出版信息

Hum Genet. 2012 Jul;131(7):1225-34. doi: 10.1007/s00439-012-1148-4. Epub 2012 Feb 26.

Abstract

Approximately 40 single nucleotide polymorphisms (SNPs) that are associated with prostate cancer (PCa) risk have been identified through genome-wide association studies (GWAS). However, these GWAS-identified PCa risk-associated SNPs can explain only a small proportion of heritability (~13%) of PCa risk. Gene-gene interaction is speculated to be one of the major factors contributing to the so-called missing heritability. To evaluate the gene-gene interaction and PCa risk, we performed a two-stage genome-wide gene-gene interaction scan using a novel statistical approach named "Boolean Operation-based Screening and Testing". In the first stage, we exhaustively evaluated all pairs of SNP-SNP interactions for ~500,000 SNPs in 1,176 PCa cases and 1,101 control subjects from the National Cancer Institute Cancer Genetic Markers of Susceptibility (CGEMS) study. No SNP-SNP interaction reached a genome-wide significant level of 4.4E-13. The second stage of the study involved evaluation of the top 1,325 pairs of SNP-SNP interactions (P(interaction) <1.0E-08) implicated in CGEMS in another GWAS population of 1,964 PCa cases from the Johns Hopkins Hospital (JHH) and 3,172 control subjects from the Illumina iControl database. Sixteen pairs of SNP-SNP interactions were significant in the JHH population at a P(interaction) cutoff of 0.01. However, none of the 16 pairs of SNP-SNP interactions were significant after adjusting for multiple tests. The current study represents one of the first attempts to explore the high-dimensional etiology of PCa on a genome-wide scale. Our results suggested a list of SNP-SNP interactions that can be followed in other replication studies.

摘要

通过全基因组关联研究(GWAS)已经确定了大约 40 个与前列腺癌(PCa)风险相关的单核苷酸多态性(SNP)。然而,这些通过 GWAS 确定的与 PCa 风险相关的 SNP 只能解释 PCa 风险遗传率的一小部分(~13%)。基因-基因相互作用被认为是导致所谓的遗传缺失的主要因素之一。为了评估基因-基因相互作用和 PCa 风险,我们使用一种名为“基于布尔运算的筛选和测试”的新统计方法进行了两阶段全基因组基因-基因相互作用扫描。在第一阶段,我们详尽地评估了 1176 例 PCa 病例和 1101 例对照来自国家癌症研究所癌症遗传易感性标记物(CGEMS)研究中的 50 万个 SNP 之间的所有 SNP-SNP 相互作用。没有 SNP-SNP 相互作用达到全基因组显著水平 4.4E-13。研究的第二阶段涉及评估在 CGEMS 中具有相关性的前 1325 对 SNP-SNP 相互作用(P(interaction)<1.0E-08)在另一个 GWAS 人群中的评估,该人群包括来自约翰霍普金斯医院(JHH)的 1964 例 PCa 病例和来自 Illumina iControl 数据库的 3172 例对照。在 JHH 人群中,有 16 对 SNP-SNP 相互作用在 P(interaction)截值为 0.01 时具有统计学意义。然而,在进行多次检验调整后,没有一对 SNP-SNP 相互作用具有统计学意义。本研究代表了首次尝试在全基因组范围内探索 PCa 的高维病因学的研究之一。我们的研究结果提供了一个可以在其他复制研究中进行跟踪的 SNP-SNP 相互作用列表。

相似文献

1
Genome-wide two-locus epistasis scans in prostate cancer using two European populations.
Hum Genet. 2012 Jul;131(7):1225-34. doi: 10.1007/s00439-012-1148-4. Epub 2012 Feb 26.
3
A genome-wide search for loci interacting with known prostate cancer risk-associated genetic variants.
Carcinogenesis. 2012 Mar;33(3):598-603. doi: 10.1093/carcin/bgr316. Epub 2012 Jan 4.
4
A genome-wide survey over the ChIP-on-chip identified androgen receptor-binding genomic regions identifies a novel prostate cancer susceptibility locus at 12q13.13.
Cancer Epidemiol Biomarkers Prev. 2011 Nov;20(11):2396-403. doi: 10.1158/1055-9965.EPI-11-0523. Epub 2011 Sep 29.
5
7
A novel prostate cancer susceptibility locus at 19q13.
Cancer Res. 2009 Apr 1;69(7):2720-3. doi: 10.1158/0008-5472.CAN-08-3347. Epub 2009 Mar 24.
8
Interactions of and on Prostate Cancer Risk in African Americans.
Cancer Epidemiol Biomarkers Prev. 2019 Jun;28(6):1067-1075. doi: 10.1158/1055-9965.EPI-18-1092. Epub 2019 Mar 26.
10
KLK3 SNP-SNP interactions for prediction of prostate cancer aggressiveness.
Sci Rep. 2021 Apr 29;11(1):9264. doi: 10.1038/s41598-021-85169-7.

引用本文的文献

3
SNP-SNP interactions as risk factors for aggressive prostate cancer.
F1000Res. 2017 May 3;6:621. doi: 10.12688/f1000research.11027.1. eCollection 2017.
4
The Cumulative Effect of Gene-Gene and Gene-Environment Interactions on the Risk of Prostate Cancer in Chinese Men.
Int J Environ Res Public Health. 2016 Jan 27;13(2):162. doi: 10.3390/ijerph13020162.
6
The role of single nucleotide polymorphisms in predicting prostate cancer risk and therapeutic decision making.
Biomed Res Int. 2014;2014:627510. doi: 10.1155/2014/627510. Epub 2014 Feb 19.
7
How genome-wide SNP-SNP interactions relate to nasopharyngeal carcinoma susceptibility.
PLoS One. 2013 Dec 23;8(12):e83034. doi: 10.1371/journal.pone.0083034. eCollection 2013.
10
Genome-wide search for gene-gene interactions in colorectal cancer.
PLoS One. 2012;7(12):e52535. doi: 10.1371/journal.pone.0052535. Epub 2012 Dec 26.

本文引用的文献

1
A genome-wide survey over the ChIP-on-chip identified androgen receptor-binding genomic regions identifies a novel prostate cancer susceptibility locus at 12q13.13.
Cancer Epidemiol Biomarkers Prev. 2011 Nov;20(11):2396-403. doi: 10.1158/1055-9965.EPI-11-0523. Epub 2011 Sep 29.
3
Genome-wide association scan allowing for epistasis in type 2 diabetes.
Ann Hum Genet. 2011 Jan;75(1):10-9. doi: 10.1111/j.1469-1809.2010.00629.x. Epub 2010 Dec 6.
4
Polarized migration of lymphatic endothelial cells is critically dependent on podoplanin regulation of Cdc42.
Am J Physiol Lung Cell Mol Physiol. 2011 Jan;300(1):L32-42. doi: 10.1152/ajplung.00171.2010. Epub 2010 Oct 29.
5
BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies.
Am J Hum Genet. 2010 Sep 10;87(3):325-40. doi: 10.1016/j.ajhg.2010.07.021.
8
On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data.
Bioinformatics. 2010 Jul 15;26(14):1752-8. doi: 10.1093/bioinformatics/btq257. Epub 2010 May 26.
9
Inherited genetic variant predisposes to aggressive but not indolent prostate cancer.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2136-40. doi: 10.1073/pnas.0914061107. Epub 2010 Jan 11.
10
Tumorigenic role of podoplanin in esophageal squamous-cell carcinoma.
Ann Surg Oncol. 2010 May;17(5):1311-23. doi: 10.1245/s10434-009-0895-5. Epub 2010 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验