Suppr超能文献

与 ChIP-On-chip 分析中捕获的雄激素受体结合位点区域中的 SNPs 相关的前列腺癌风险的关联。

Association of prostate cancer risk with SNPs in regions containing androgen receptor binding sites captured by ChIP-On-chip analyses.

机构信息

State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.

出版信息

Prostate. 2012 Mar;72(4):376-85. doi: 10.1002/pros.21439. Epub 2011 Jun 10.

Abstract

BACKGROUND

Genome-wide association studies (GWAS) have identified approximately three dozen single nucleotide polymorphisms (SNPs) consistently associated with prostate cancer (PCa) risk. Despite the reproducibility of these associations, the molecular mechanism for most of these SNPs has not been well elaborated as most lie within non-coding regions of the genome. Androgens play a key role in prostate carcinogenesis. Recently, using ChIP-on-chip technology, 22,447 androgen receptor (AR) binding sites have been mapped throughout the genome, greatly expanding the genomic regions potentially involved in androgen-mediated activity.

METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that sequence variants in AR binding sites are associated with PCa risk, we performed a systematic evaluation among two existing PCa GWAS cohorts; the Johns Hopkins Hospital and the Cancer Genetic Markers of Susceptibility (CGEMS) study population. We demonstrate that regions containing AR binding sites are significantly enriched for PCa risk-associated SNPs, that is, more than expected by chance alone. In addition, compared with the entire genome, these newly observed risk-associated SNPs in these regions are significantly more likely to overlap with established PCa risk-associated SNPs from previous GWAS. These results are consistent with our previous finding from a bioinformatics analysis that one-third of the 33 known PCa risk-associated SNPs discovered by GWAS are located in regions of the genome containing AR binding sites.

CONCLUSIONS/SIGNIFICANCE: The results to date provide novel statistical evidence suggesting an androgen-mediated mechanism by which some PCa associated SNPs act to influence PCa risk. However, these results are hypothesis generating and ultimately warrant testing through in-depth molecular analyses.

摘要

背景

全基因组关联研究(GWAS)已经确定了大约三十几个单核苷酸多态性(SNP)与前列腺癌(PCa)风险一致相关。尽管这些关联具有可重复性,但由于大多数 SNP 位于基因组的非编码区域内,因此这些 SNP 的分子机制尚未得到很好的阐述。雄激素在前列腺癌的发生中起着关键作用。最近,使用 ChIP-on-chip 技术,已经在整个基因组中绘制了 22447 个雄激素受体(AR)结合位点,大大扩展了可能涉及雄激素介导活性的基因组区域。

方法/主要发现:为了检验 AR 结合位点的序列变异与 PCa 风险相关的假设,我们在两个现有的 PCa GWAS 队列中进行了系统评估;约翰霍普金斯医院和癌症遗传易感标记物(CGEMS)研究人群。我们证明,包含 AR 结合位点的区域明显富含与 PCa 风险相关的 SNP,即超过仅通过机会所预期的数量。此外,与整个基因组相比,这些新观察到的这些区域中的风险相关 SNP 与之前 GWAS 中确定的与 PCa 风险相关的 SNP 重叠的可能性明显更高。这些结果与我们之前从生物信息学分析中得出的发现一致,即 GWAS 发现的 33 个已知 PCa 风险相关 SNP 中有三分之一位于包含 AR 结合位点的基因组区域。

结论/意义:目前的结果提供了新的统计证据,表明某些与 PCa 相关的 SNP 通过雄激素介导的机制发挥作用,从而影响 PCa 风险。然而,这些结果是假设性的,最终需要通过深入的分子分析进行验证。

相似文献

引用本文的文献

4
Comprehensive functional annotation of 77 prostate cancer risk loci.全面注释 77 个前列腺癌风险位点的功能。
PLoS Genet. 2014 Jan 30;10(1):e1004102. doi: 10.1371/journal.pgen.1004102. eCollection 2014 Jan.
5
Prostate cancer research in China.中国的前列腺癌研究。
Asian J Androl. 2013 May;15(3):350-3. doi: 10.1038/aja.2013.37. Epub 2013 Apr 22.
6
Androgen metabolism and JAK/STAT pathway genes and prostate cancer risk.雄激素代谢和 JAK/STAT 通路基因与前列腺癌风险。
Cancer Epidemiol. 2012 Aug;36(4):347-53. doi: 10.1016/j.canep.2012.04.002. Epub 2012 Apr 26.
8
Male reproductive health and prostate cancer risk.男性生殖健康与前列腺癌风险。
Curr Opin Urol. 2011 Nov;21(6):506-13. doi: 10.1097/MOU.0b013e32834bdf14.

本文引用的文献

2
Validation of genome-wide prostate cancer associations in men of African descent.验证非洲裔男性全基因组前列腺癌关联。
Cancer Epidemiol Biomarkers Prev. 2011 Jan;20(1):23-32. doi: 10.1158/1055-9965.EPI-10-0698. Epub 2010 Nov 11.
6
Inherited genetic variant predisposes to aggressive but not indolent prostate cancer.遗传基因突变易导致侵袭性而非惰性前列腺癌。
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2136-40. doi: 10.1073/pnas.0914061107. Epub 2010 Jan 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验