Suppr超能文献

CA3 和 CA1 海马锥体神经元的活动动态和行为相关性。

Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons.

机构信息

Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey, USA.

出版信息

Hippocampus. 2012 Aug;22(8):1659-80. doi: 10.1002/hipo.22002. Epub 2012 Feb 27.

Abstract

The CA3 and CA1 pyramidal neurons are the major principal cell types of the hippocampus proper. The strongly recurrent collateral system of CA3 cells and the largely parallel-organized CA1 neurons suggest that these regions perform distinct computations. However, a comprehensive comparison between CA1 and CA3 pyramidal cells in terms of firing properties, network dynamics, and behavioral correlations is sparse in the intact animal. We performed large-scale recordings in the dorsal hippocampus of rats to quantify the similarities and differences between CA1 (n > 3,600) and CA3 (n > 2,200) pyramidal cells during sleep and exploration in multiple environments. CA1 and CA3 neurons differed significantly in firing rates, spike burst propensity, spike entrainment by the theta rhythm, and other aspects of spiking dynamics in a brain state-dependent manner. A smaller proportion of CA3 than CA1 cells displayed prominent place fields, but place fields of CA3 neurons were more compact, more stable, and carried more spatial information per spike than those of CA1 pyramidal cells. Several other features of the two cell types were specific to the testing environment. CA3 neurons showed less pronounced phase precession and a weaker position versus spike-phase relationship than CA1 cells. Our findings suggest that these distinct activity dynamics of CA1 and CA3 pyramidal cells support their distinct computational roles.

摘要

CA3 和 CA1 锥体神经元是海马体的主要主要细胞类型。CA3 细胞强烈的复发性侧支系统和 CA1 神经元的大体平行组织表明这些区域执行不同的计算。然而,在完整动物中,关于 CA1 和 CA3 锥体神经元在放电特性、网络动力学和行为相关性方面的全面比较是稀疏的。我们在大鼠背侧海马体中进行了大规模记录,以在多个环境中量化睡眠和探索期间 CA1(n>3600)和 CA3(n>2200)锥体神经元之间的相似性和差异。CA1 和 CA3 神经元在放电率、爆发倾向、被θ节律诱发的尖峰、以及尖峰动力学的其他方面以脑状态依赖的方式显著不同。与 CA1 细胞相比,较小比例的 CA3 细胞显示出明显的位置场,但 CA3 神经元的位置场更紧凑、更稳定,并且每个尖峰携带的空间信息比 CA1 锥体细胞更多。两种细胞类型的其他几个特征特定于测试环境。CA3 神经元的相位超前不那么明显,位置与尖峰相位关系比 CA1 细胞弱。我们的发现表明,这些 CA1 和 CA3 锥体神经元的不同活动动力学支持它们的不同计算作用。

相似文献

1
Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons.
Hippocampus. 2012 Aug;22(8):1659-80. doi: 10.1002/hipo.22002. Epub 2012 Feb 27.
3
Silencing CA3 disrupts temporal coding in the CA1 ensemble.
Nat Neurosci. 2016 Jul;19(7):945-51. doi: 10.1038/nn.4311. Epub 2016 May 30.
4
Differential behavioral state-dependence in the burst properties of CA3 and CA1 neurons.
Neuroscience. 2006 Sep 15;141(4):1665-77. doi: 10.1016/j.neuroscience.2006.05.052. Epub 2006 Jul 14.
6
Hippocampal phase precession from dual input components.
J Neurosci. 2012 Nov 21;32(47):16693-703a. doi: 10.1523/JNEUROSCI.2786-12.2012.
7
Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions.
Hippocampus. 2016 Dec;26(12):1593-1607. doi: 10.1002/hipo.22659. Epub 2016 Sep 27.
8
Perirhinal cortical inactivation impairs object-in-place memory and disrupts task-dependent firing in hippocampal CA1, but not in CA3.
Front Neural Circuits. 2013 Aug 14;7:134. doi: 10.3389/fncir.2013.00134. eCollection 2013.
9
Structural Correlates of CA2 and CA3 Pyramidal Cell Activity in Freely-Moving Mice.
J Neurosci. 2020 Jul 22;40(30):5797-5806. doi: 10.1523/JNEUROSCI.0099-20.2020. Epub 2020 Jun 18.
10
Phase locking of hippocampal CA3 neurons to distal CA1 theta oscillations selectively predicts memory performance.
Cell Rep. 2024 Jun 25;43(6):114276. doi: 10.1016/j.celrep.2024.114276. Epub 2024 May 29.

引用本文的文献

1
Representational drift as the consequence of ongoing memory storage.
Sci Rep. 2025 Jul 30;15(1):27746. doi: 10.1038/s41598-025-11102-x.
2
Cooperative coding of continuous variables in networks with sparsity constraint.
PLoS Comput Biol. 2025 Jul 3;21(7):e1012156. doi: 10.1371/journal.pcbi.1012156. eCollection 2025 Jul.
3
Impact of symmetry in local learning rules on predictive neural representations and generalization in spatial navigation.
PLoS Comput Biol. 2025 Jun 23;21(6):e1013056. doi: 10.1371/journal.pcbi.1013056. eCollection 2025 Jun.
4
Hamayou () protein hydrolysate ameliorates depression by regulating the mitogen-activated protein kinase pathway.
J Tradit Chin Med. 2025 Jun;45(3):493-507. doi: 10.19852/j.cnki.jtcm.2025.03.007.
5
All active hippocampal pyramidal cells are place cells.
iScience. 2025 Apr 21;28(6):112489. doi: 10.1016/j.isci.2025.112489. eCollection 2025 Jun 20.
6
From Morphology to Computation: How Synaptic Organization Shapes Place Fields in CA1 Pyramidal Neurons.
bioRxiv. 2025 Jun 2:2025.05.30.657022. doi: 10.1101/2025.05.30.657022.
7
Interleaved single and bursting spiking resonance in neurons.
PLoS Comput Biol. 2025 May 22;21(5):e1013126. doi: 10.1371/journal.pcbi.1013126. eCollection 2025 May.
8
Alzheimer's disease patient-derived high-molecular-weight tau impairs bursting in hippocampal neurons.
Cell. 2025 Jul 10;188(14):3775-3788.e21. doi: 10.1016/j.cell.2025.04.006. Epub 2025 Apr 28.
10
Reciprocal interactions between CA1 pyramidal and axo-axonic cells control sharp wave-ripple events.
Res Sq. 2025 Feb 13:rs.3.rs-5844238. doi: 10.21203/rs.3.rs-5844238/v1.

本文引用的文献

1
Updating hippocampal representations: CA2 joins the circuit.
Trends Neurosci. 2011 Oct;34(10):526-35. doi: 10.1016/j.tins.2011.07.007. Epub 2011 Aug 29.
2
A model of intracellular θ phase precession dependent on intrinsic subthreshold membrane currents.
J Neurosci. 2011 Aug 24;31(34):12282-96. doi: 10.1523/JNEUROSCI.0586-11.2011.
3
Hippocampal CA1 pyramidal cells form functionally distinct sublayers.
Nat Neurosci. 2011 Aug 7;14(9):1174-81. doi: 10.1038/nn.2894.
5
Path shape impacts the extent of CA1 pattern recurrence both within and across environments.
J Neurophysiol. 2011 Apr;105(4):1815-24. doi: 10.1152/jn.00573.2010. Epub 2011 Feb 2.
6
Spatial representation along the proximodistal axis of CA1.
Neuron. 2010 Oct 6;68(1):127-37. doi: 10.1016/j.neuron.2010.08.042.
7
Hippocampal episode fields develop with learning.
Hippocampus. 2011 Nov;21(11):1240-9. doi: 10.1002/hipo.20832. Epub 2010 Jul 21.
8
Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop.
Neuron. 2010 May 27;66(4):560-72. doi: 10.1016/j.neuron.2010.04.013.
9
Distinct representations and theta dynamics in dorsal and ventral hippocampus.
J Neurosci. 2010 Feb 3;30(5):1777-87. doi: 10.1523/JNEUROSCI.4681-09.2010.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验