Suppr超能文献

用于推断祖先基因顺序的混合框架。

A mixture framework for inferring ancestral gene orders.

机构信息

Center for Computational Biology, Beijing Forestry University, Beijing 100083, China.

出版信息

BMC Genomics. 2012;13 Suppl 1(Suppl 1):S7. doi: 10.1186/1471-2164-13-S1-S7. Epub 2012 Jan 17.

Abstract

BACKGROUND

Inferring gene orders of ancestral genomes has the potential to provide detailed information about the recent evolution of species descended from them. Current popular tools to infer ancestral genome data (such as GRAPPA and MGR) are all parsimony-based direct optimization methods with the aim to minimize the number of evolutionary events. Recently a new method based on the approach of maximum likelihood is proposed. The current implementation of these direct optimization methods are all based on solving the median problems and achieve more accurate results than the maximum likelihood method. However, both GRAPPA and MGR are extremely time consuming under high rearrangement rates. The maximum likelihood method, on the contrary, runs much faster with less accurate results.

RESULTS

We propose a mixture method to optimize the inference of ancestral gene orders. This method first uses the maximum likelihood approach to identify gene adjacencies that are likely to be present in the ancestral genomes, which are then fixed in the branch-and-bound search of median calculations. This hybrid approach not only greatly speeds up the direct optimization methods, but also retains high accuracy even when the genomes are evolutionary very distant.

CONCLUSIONS

Our mixture method produces more accurate ancestral genomes compared with the maximum likelihood method while the computation time is far less than that of the parsimony-based direct optimization methods. It can effectively deal with genome data of relatively high rearrangement rates which is hard for the direct optimization methods to solve in a reasonable amount of time, thus extends the range of data that can be analyzed by the existing methods.

摘要

背景

推断祖先基因组的基因顺序有可能提供有关从它们衍生的物种最近进化的详细信息。目前流行的用于推断祖先基因组数据的工具(如 GRAPPA 和 MGR)都是基于简约的直接优化方法,旨在最小化进化事件的数量。最近提出了一种基于最大似然法的新方法。这些直接优化方法的当前实现都是基于解决中位数问题,并且比最大似然法得到更准确的结果。然而,在高重排率下,GRAPPA 和 MGR 都非常耗时。相反,最大似然法的运行速度更快,但结果准确性较低。

结果

我们提出了一种混合方法来优化祖先基因顺序的推断。该方法首先使用最大似然法来识别可能存在于祖先基因组中的基因邻接关系,然后将其固定在中位数计算的分支定界搜索中。这种混合方法不仅大大加快了直接优化方法的速度,而且即使在基因组进化非常遥远的情况下,仍然保持了高度的准确性。

结论

与最大似然法相比,我们的混合方法产生了更准确的祖先基因组,而计算时间远远少于基于简约的直接优化方法。它可以有效地处理相对较高重排率的基因组数据,这是直接优化方法难以在合理的时间内解决的问题,从而扩展了现有方法可以分析的数据范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02fd/3394415/b9101e0b73a3/1471-2164-13-S1-S7-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验