Suppr超能文献

谷氨酸和痕量金属调节电压门控 Ca(v)2.3 钙通道的分子和生物物理基础。

Molecular and biophysical basis of glutamate and trace metal modulation of voltage-gated Ca(v)2.3 calcium channels.

机构信息

Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

J Gen Physiol. 2012 Mar;139(3):219-34. doi: 10.1085/jgp.201110699.

Abstract

Here, we describe a new mechanism by which glutamate (Glu) and trace metals reciprocally modulate activity of the Ca(v)2.3 channel by profoundly shifting its voltage-dependent gating. We show that zinc and copper, at physiologically relevant concentrations, occupy an extracellular binding site on the surface of Ca(v)2.3 and hold the threshold for activation of these channels in a depolarized voltage range. Abolishing this binding by chelation or the substitution of key amino acid residues in IS1-IS2 (H111) and IS2-IS3 (H179 and H183) loops potentiates Ca(v)2.3 by shifting the voltage dependence of activation toward more negative membrane potentials. We demonstrate that copper regulates the voltage dependence of Ca(v)2.3 by affecting gating charge movements. Thus, in the presence of copper, gating charges transition into the "ON" position slower, delaying activation and reducing the voltage sensitivity of the channel. Overall, our results suggest a new mechanism by which Glu and trace metals transiently modulate voltage-dependent gating of Ca(v)2.3, potentially affecting synaptic transmission and plasticity in the brain.

摘要

在这里,我们描述了一种新的机制,即谷氨酸(Glu)和痕量金属通过深刻改变钙通道(Ca(v)2.3)的电压依赖性门控来相互调节钙通道(Ca(v)2.3)的活性。我们表明,锌和铜在生理相关浓度下,占据钙通道(Ca(v)2.3)表面的一个细胞外结合位点,并将这些通道的激活阈值置于去极化电压范围内。通过螯合或取代 IS1-IS2(H111)和 IS2-IS3(H179 和 H183)环中的关键氨基酸残基来消除这种结合,通过将激活的电压依赖性向更负的膜电位移动来增强钙通道(Ca(v)2.3)的功能。我们证明,铜通过影响门控电荷运动来调节钙通道(Ca(v)2.3)的电压依赖性。因此,在铜存在的情况下,门控电荷进入“ON”位置的速度较慢,从而延迟了激活并降低了通道的电压敏感性。总的来说,我们的结果表明了一种新的机制,即谷氨酸(Glu)和痕量金属可以瞬时调节钙通道(Ca(v)2.3)的电压依赖性门控,这可能会影响大脑中的突触传递和可塑性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5229/3289959/f0c9b8961a0f/JGP_201110699_Fig1.jpg

相似文献

2
Reciprocal modulation of Ca 2.3 voltage-gated calcium channels by copper(II) ions and kainic acid.
J Neurochem. 2018 Nov;147(3):310-322. doi: 10.1111/jnc.14546. Epub 2018 Aug 30.
4
Two sets of amino acids of the domain I of Cav2.3 Ca(2+) channels contribute to their high sensitivity to extracellular protons.
Pflugers Arch. 2011 Aug;462(2):303-14. doi: 10.1007/s00424-011-0974-x. Epub 2011 May 25.
5
Ca(v)2.3 Ca2+ channel interacts with the G1-subunit of V-ATPase.
Cell Physiol Biochem. 2011;27(5):421-32. doi: 10.1159/000329963. Epub 2011 Jun 15.
6
Histidine residues in the IS3-IS4 loop are critical for nickel-sensitive inhibition of the Cav2.3 calcium channel.
FEBS Lett. 2007 Dec 22;581(30):5774-80. doi: 10.1016/j.febslet.2007.11.045. Epub 2007 Nov 26.
7
An ancestral MAGUK protein supports the modulation of mammalian voltage-gated Ca channels through a conserved Caβ-like interface.
Biochim Biophys Acta Biomembr. 2020 Nov 1;1862(11):183439. doi: 10.1016/j.bbamem.2020.183439. Epub 2020 Aug 16.
9
A novel extracellular calcium sensing mechanism in voltage-gated potassium ion channels.
J Neurosci. 2001 Jun 15;21(12):4143-53. doi: 10.1523/JNEUROSCI.21-12-04143.2001.

引用本文的文献

1
High-resolution crystal structure of the Mu8.1 conotoxin from Conus mucronatus.
Acta Crystallogr F Struct Biol Commun. 2023 Sep 1;79(Pt 9):240-246. doi: 10.1107/S2053230X23007070. Epub 2023 Aug 29.
5
L-cysteine modulates visceral nociception mediated by the Ca2.3 R-type calcium channels.
Pflugers Arch. 2022 Apr;474(4):435-445. doi: 10.1007/s00424-022-02674-y. Epub 2022 Mar 10.
6
Ca2.3 channel function and Zn-induced modulation: potential mechanisms and (patho)physiological relevance.
Channels (Austin). 2020 Dec;14(1):362-379. doi: 10.1080/19336950.2020.1829842.
7
9
Intracerebroventricular administration of histidine reduces kainic acid-induced convulsive seizures in mice.
Exp Brain Res. 2019 Oct;237(10):2481-2493. doi: 10.1007/s00221-019-05605-z. Epub 2019 Jul 18.
10
Copper signalling: causes and consequences.
Cell Commun Signal. 2018 Oct 22;16(1):71. doi: 10.1186/s12964-018-0277-3.

本文引用的文献

3
Structural determinants of the high affinity extracellular zinc binding site on Cav3.2 T-type calcium channels.
J Biol Chem. 2010 Jan 29;285(5):3271-81. doi: 10.1074/jbc.M109.067660. Epub 2009 Nov 23.
4
Sensing voltage across lipid membranes.
Nature. 2008 Dec 18;456(7224):891-7. doi: 10.1038/nature07620.
5
An extracellular Cu2+ binding site in the voltage sensor of BK and Shaker potassium channels.
J Gen Physiol. 2008 May;131(5):483-502. doi: 10.1085/jgp.200809980.
6
Zinc at glutamatergic synapses.
Neuroscience. 2009 Jan 12;158(1):126-36. doi: 10.1016/j.neuroscience.2008.01.061. Epub 2008 Feb 15.
7
Metals in Alzheimer's and Parkinson's diseases.
Curr Opin Chem Biol. 2008 Apr;12(2):222-8. doi: 10.1016/j.cbpa.2008.02.019.
8
Calcium signaling.
Cell. 2007 Dec 14;131(6):1047-58. doi: 10.1016/j.cell.2007.11.028.
9
Histidine residues in the IS3-IS4 loop are critical for nickel-sensitive inhibition of the Cav2.3 calcium channel.
FEBS Lett. 2007 Dec 22;581(30):5774-80. doi: 10.1016/j.febslet.2007.11.045. Epub 2007 Nov 26.
10
Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment.
Nature. 2007 Nov 15;450(7168):376-82. doi: 10.1038/nature06265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验