Widhalm Joshua R, Ducluzeau Anne-Lise, Buller Nicole E, Elowsky Christian G, Olsen Laura J, Basset Gilles J C
Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
Plant J. 2012 Jul;71(2):205-15. doi: 10.1111/j.1365-313X.2012.04972.x. Epub 2012 Jun 19.
It is not known how plants cleave the thioester bond of 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA), a necessary step to form the naphthoquinone ring of phylloquinone (vitamin K(1) ). In fact, only recently has the hydrolysis of DHNA-CoA been demonstrated to be enzyme driven in vivo, and the cognate thioesterase characterized in the cyanobacterium Synechocystis. With a few exceptions in certain prokaryotic (Sorangium and Opitutus) and eukaryotic (Cyanidium, Cyanidioschyzon and Paulinella) organisms, orthologs of DHNA-CoA thioesterase are missing outside of the cyanobacterial lineage. In this study, genomic approaches and functional complementation experiments identified two Arabidopsis genes encoding functional DHNA-CoA thioesterases. The deduced plant proteins display low percentages of identity with cyanobacterial DHNA-CoA thioesterases, and do not even share the same catalytic motif. GFP-fusion experiments demonstrated that the Arabidopsis proteins are targeted to peroxisomes, and subcellular fractionations of Arabidopsis leaves confirmed that DHNA-CoA thioesterase activity occurs in this organelle. In vitro assays with various aromatic and aliphatic acyl-CoA thioester substrates showed that the recombinant Arabidopsis enzymes preferentially hydrolyze DHNA-CoA. Cognate T-DNA knock-down lines display reduced DHNA-CoA thioesterase activity and phylloquinone content, establishing in vivo evidence that the Arabidopsis enzymes are involved in phylloquinone biosynthesis. Extraordinarily, structure-based phylogenies coupled to comparative genomics demonstrate that plant DHNA-CoA thioesterases originate from a horizontal gene transfer with a bacterial species of the Lactobacillales order.
目前尚不清楚植物如何裂解1,4 - 二羟基 - 2 - 萘甲酰辅酶A(DHNA - CoA)的硫酯键,而这是形成叶绿醌(维生素K(1))萘醌环的必要步骤。事实上,直到最近才证明DHNA - CoA的水解在体内是由酶驱动的,并且在蓝藻集胞藻中鉴定出了同源硫酯酶。除了某些原核生物(纤维堆囊菌和奥皮图茨菌)和真核生物(嗜热栖热放线菌、嗜热栖热放线菌和保林内拉藻)中的少数例外情况外,蓝藻谱系之外缺少DHNA - CoA硫酯酶的直系同源物。在这项研究中,基因组方法和功能互补实验鉴定出了两个编码功能性DHNA - CoA硫酯酶的拟南芥基因。推导的植物蛋白与蓝藻DHNA - CoA硫酯酶的同源性较低,甚至不共享相同的催化基序。绿色荧光蛋白融合实验表明拟南芥蛋白定位于过氧化物酶体,拟南芥叶片的亚细胞分级分离证实了DHNA - CoA硫酯酶活性存在于该细胞器中。用各种芳香族和脂肪族酰基辅酶A硫酯底物进行的体外测定表明,重组拟南芥酶优先水解DHNA - CoA。同源T - DNA敲除系显示DHNA - CoA硫酯酶活性和叶绿醌含量降低,从而在体内证明拟南芥酶参与叶绿醌的生物合成。特别的是,基于结构的系统发育与比较基因组学相结合表明,植物DHNA - CoA硫酯酶起源于与乳杆菌目细菌物种的水平基因转移。