Suppr超能文献

胎儿肱骨和股骨小梁微观结构的发育。

Development of fetal trabecular micro-architecture in the humerus and femur.

机构信息

Department of Surgery and Cancer, Imperial College, London, UK.

出版信息

J Anat. 2012 May;220(5):496-503. doi: 10.1111/j.1469-7580.2012.01487.x. Epub 2012 Feb 29.

Abstract

It is widely accepted that during postnatal development trabecular bone adapts to the prevailing loading environment via modelling. However, very little is known about the mechanisms (whether it is predominantly modelling or remodelling) or controls (such as whether loading influences development) of fetal bone growth. In order to make inferences about these factors, we assessed the pattern of fetal trabecular development in the humerus and femur via histomorphometric parameter quantification. Growth and development (between 4 and 9 months prenatal) of trabecular architecture (i.e. thickness, number and bone volume fraction) was compared across upper and lower limb bones, proximal and distal regions, and sexes. The data presented here indicate that during prenatal development trabeculae became thicker and less numerous, whilst bone volume fraction remained constant. This partly mimics the pattern of early postnatal development (0-2 years) described by other researchers. Thickness was reported to increase whilst number reduced, but bone volume fraction decreased. This is perhaps because the balance of bone modelling (deposition vs. resorption) changes post partum. Published histological data suggest that bone deposition slows after birth, while resorption rates remain constant. Hence, fetal development may be characterized by relatively high rates of modelling and, particularly, bone deposition in comparison to postnatal. With respect to measures of thickness, number and bone volume fraction prenatal development was not bone, site, or sex specific, whilst postnatally these measures of architecture diverge. This is despite reported developmental variation in the frequency, speed and amplitude of fetal movements (which begin after 11 weeks and continue until birth), and probably therefore loading induced by muscular contractions. This may be because prenatal limb bone micro-architecture follows a generalised predetermined growth trajectory (or genetic blueprint), as appears to be the case for gross distribution of trabecular tissue.

摘要

人们普遍认为,在产后发育过程中,小梁骨通过塑造来适应流行的加载环境。然而,对于胎儿骨生长的机制(是主要通过塑造还是重塑)或控制因素(例如,加载是否影响发育)知之甚少。为了对这些因素进行推断,我们通过组织形态计量学参数定量评估了肱骨和股骨的胎儿小梁骨发育模式。在上下肢骨、近侧和远侧区域以及性别之间比较了小梁结构(即厚度、数量和骨体积分数)的生长和发育(产前 4 至 9 个月)。这里呈现的数据表明,在产前发育过程中,小梁骨变得更厚,数量减少,而骨体积分数保持不变。这部分模拟了其他研究人员描述的早期产后发育(0-2 岁)的模式。据报道,厚度增加,而数量减少,但骨体积分数降低。这可能是因为产后骨塑造(沉积与吸收)的平衡发生了变化。发表的组织学数据表明,出生后骨沉积速度减慢,而吸收速率保持不变。因此,与产后相比,胎儿发育可能以相对较高的建模率为特征,特别是骨沉积。就厚度、数量和骨体积分数而言,产前发育与骨、部位或性别无关,而产后这些结构测量值则有所不同。尽管有报道称胎儿运动的频率、速度和幅度存在发育变化(在 11 周后开始,并持续到出生),并且可能因此由肌肉收缩引起加载,但情况确实如此。这可能是因为产前肢体骨微结构遵循一种普遍的预定生长轨迹(或遗传蓝图),就像小梁组织的总体分布一样。

相似文献

1
Development of fetal trabecular micro-architecture in the humerus and femur.
J Anat. 2012 May;220(5):496-503. doi: 10.1111/j.1469-7580.2012.01487.x. Epub 2012 Feb 29.
2
The ontogeny of human fetal trabecular bone architecture occurs in a limb-specific manner.
Sci Rep. 2024 Aug 31;14(1):20261. doi: 10.1038/s41598-024-67566-w.
3
Adaptations in cortical and trabecular bone in response to mechanical loading with and without weight bearing.
Calcif Tissue Int. 2006 Dec;79(6):395-403. doi: 10.1007/s00223-005-0293-3. Epub 2006 Dec 8.
6
Ontogeny and variability of trabecular bone in the chimpanzee humerus, femur and tibia.
Am J Phys Anthropol. 2018 Dec;167(4):713-736. doi: 10.1002/ajpa.23696. Epub 2018 Aug 29.
7
Trabecular bone microstructure scales allometrically in the primate humerus and femur.
Proc Biol Sci. 2013 Mar 13;280(1758):20130172. doi: 10.1098/rspb.2013.0172. Print 2013 May 7.
9
Human fetal bone development: histomorphometric evaluation of the proximal femoral metaphysis.
Bone. 2002 Jun;30(6):823-8. doi: 10.1016/s8756-3282(02)00724-x.
10
Maternal 25-hydroxyvitamin D level and fetal bone growth assessed by ultrasound: a systematic review.
Ultrasound Obstet Gynecol. 2014 Dec;44(6):633-40. doi: 10.1002/uog.13431.

引用本文的文献

1
Trabecular Bone Ontogeny of the Human Distal Tibia.
Am J Biol Anthropol. 2025 Jan;186(1):e25043. doi: 10.1002/ajpa.25043. Epub 2024 Dec 8.
2
The ontogeny of human fetal trabecular bone architecture occurs in a limb-specific manner.
Sci Rep. 2024 Aug 31;14(1):20261. doi: 10.1038/s41598-024-67566-w.
4
Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates.
Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2208772119. doi: 10.1073/pnas.2208772119. Epub 2022 Dec 2.
6
Morphologies in-between: The impact of the first steps on the human talus.
Anat Rec (Hoboken). 2023 Jan;306(1):124-142. doi: 10.1002/ar.25010. Epub 2022 Jun 21.
8
Nanoscale mechanisms in age-related hip-fractures.
Sci Rep. 2020 Aug 26;10(1):14208. doi: 10.1038/s41598-020-69783-5.
9
Novel imaging techniques to study postmortem human fetal anatomy: a systematic review on microfocus-CT and ultra-high-field MRI.
Eur Radiol. 2020 Apr;30(4):2280-2292. doi: 10.1007/s00330-019-06543-8. Epub 2019 Dec 13.
10
Ontogenetic changes to bone microstructure in an archaeologically derived sample of human ribs.
J Anat. 2020 Mar;236(3):448-462. doi: 10.1111/joa.13116. Epub 2019 Nov 15.

本文引用的文献

1
Ontogenetic changes in the internal and external morphology of the ilium in modern humans.
J Anat. 2011 Mar;218(3):324-35. doi: 10.1111/j.1469-7580.2011.01342.x.
3
Birth weight and adult bone mass: a systematic literature review.
Osteoporos Int. 2010 Dec;21(12):1981-91. doi: 10.1007/s00198-010-1236-z. Epub 2010 Apr 24.
4
Trabecular bone structure in the humeral and femoral heads of anthropoid primates.
Anat Rec (Hoboken). 2010 Apr;293(4):719-29. doi: 10.1002/ar.21139.
5
Anticipating bipedalism: trabecular organization in the newborn ilium.
J Anat. 2009 Jun;214(6):817-29. doi: 10.1111/j.1469-7580.2009.01073.x.
6
Early-life events. Effects on aging.
Hormones (Athens). 2008 Apr-Jun;7(2):101-13. doi: 10.1007/BF03401501.
8
Mechanobiology of embryonic limb development.
Ann N Y Acad Sci. 2007 Apr;1101:389-411. doi: 10.1196/annals.1389.003. Epub 2007 Mar 7.
9
Trabecular bone ontogeny in the human proximal femur.
J Hum Evol. 2006 Dec;51(6):591-602. doi: 10.1016/j.jhevol.2006.06.004. Epub 2006 Aug 5.
10
Automated method to measure trabecular thickness from microcomputed tomographic scans and its application.
Anat Rec A Discov Mol Cell Evol Biol. 2006 Sep;288(9):982-8. doi: 10.1002/ar.a.20371.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验