Suppr超能文献

估算部分可观测性和非线性气候效应对候鸟随机群落动态的影响。

Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl.

机构信息

Department of Wetland Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio S/N, E-41092 Sevilla, Spain.

出版信息

J Anim Ecol. 2012 Sep;81(5):1113-25. doi: 10.1111/j.1365-2656.2012.01972.x. Epub 2012 Feb 28.

Abstract
  1. Understanding the impact of environmental variability on migrating species requires the estimation of sequential abiotic effects in different geographic areas across the life cycle. For instance, waterfowl (ducks, geese and swans) usually breed widely dispersed throughout their breeding range and gather in large numbers in their wintering headquarters, but there is a lack of knowledge on the effects of the sequential environmental conditions experienced by migrating birds on the long-term community dynamics at their wintering sites. 2. Here, we analyse multidecadal time-series data of 10 waterfowl species wintering in the Guadalquivir Marshes (SW Spain), the single most important wintering site for waterfowl breeding in Europe. We use a multivariate state-space approach to estimate the effects of biotic interactions, local environmental forcing during winter and large-scale climate during breeding and migration on wintering multispecies abundance fluctuations, while accounting for partial observability (observation error and missing data) in both population and environmental data. 3. The joint effect of local weather and large-scale climate explained 31·6% of variance at the community level, while the variability explained by interspecific interactions was negligible (<5%). In general, abiotic conditions during winter prevailed over conditions experienced during breeding and migration. Across species, a pervasive and coherent nonlinear signal of environmental variability on population dynamics suggests weaker forcing at extreme values of abiotic variables. 4. Modelling missing observations through data augmentation increased the estimated magnitude of environmental forcing by an average 30·1% and reduced the impact of stochasticity by 39·3% when accounting for observation error. Interestingly however, the impact of environmental forcing on community dynamics was underestimated by an average 15·3% and environmental stochasticity overestimated by 14·1% when ignoring both observation error and data augmentation. 5. These results provide a salient example of sequential multiscale environmental forcing in a major migratory bird community, which suggests a demographic link between the breeding and wintering grounds operating through nonlinear environmental effects. Remarkably, this study highlights that modelling observation error in the environmental covariates of an ecological model can be proportionally more important than modelling this source of variance in the population data.
摘要
  1. 理解环境变异性对迁徙物种的影响需要估计在整个生命周期中不同地理区域的连续非生物效应。例如,水禽(鸭、鹅和天鹅)通常在其繁殖区域内广泛分散繁殖,并在冬季的总部大量聚集,但对于迁徙鸟类在冬季栖息地经历的连续环境条件对长期群落动态的影响知之甚少。

  2. 在这里,我们分析了在瓜达尔基维尔沼泽(西班牙西南部)越冬的 10 种水禽的多十年时间序列数据,这是欧洲水禽繁殖的最重要的越冬地之一。我们使用多元状态空间方法来估计生物相互作用、冬季本地环境强迫和繁殖和迁徙期间的大尺度气候对越冬多种群丰度波动的影响,同时考虑到种群和环境数据中的部分可观测性(观测误差和缺失数据)。

  3. 本地天气和大尺度气候的联合效应解释了群落水平上的 31.6%的方差,而种间相互作用解释的变异性可以忽略不计(<5%)。一般来说,冬季的非生物条件比繁殖和迁徙期间的条件更为重要。在物种间,环境变异性对种群动态的普遍而一致的非线性信号表明,在生物变量的极值处强迫较弱。

  4. 通过数据扩充对缺失观测值进行建模,在考虑观测误差时,平均增加了环境强迫的估计幅度 30.1%,并减少了随机性的影响 39.3%。然而,有趣的是,当忽略观测误差和数据扩充时,环境强迫对群落动态的影响被低估了平均 15.3%,环境随机性被高估了 14.1%。

  5. 这些结果为主要迁徙鸟类群落中的连续多尺度环境强迫提供了一个显著的例子,这表明繁殖地和越冬地之间存在通过非线性环境效应运作的种群联系。值得注意的是,这项研究强调,在生态模型的环境协变量中对观测误差进行建模可能比在种群数据中对这种方差源进行建模更为重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验