Wang Xuefeng, Qin Huaizhen, Morris Nathan J, Zhu Xiaofeng, Elston Robert C
Department of Epidemiology and Biostatistics, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106-7281, USA.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S26. doi: 10.1186/1753-6561-5-S9-S26.
Gene-based and single-nucleotide polymorphism (SNP) set association studies provide an important complement to SNP analysis. Kernel-based nonparametric regression has recently emerged as a powerful and flexible tool for this purpose. Our goal is to explore whether this approach can be extended to incorporate and test for interaction effects, especially for genes containing rare variant SNPs. Here, we construct nonparametric regression models that can be used to include a gene-environment interaction effect under the framework of the least-squares kernel machine and examine the performance of the proposed method on the Genetic Analysis Workshop 17 unrelated individuals data set. Two hundred simulated replicates were used to explore the power for detecting interaction. We demonstrate through a genome scan of the quantitative phenotype Q1 that the simulated gene-environment interaction effect in the data can be detected with reasonable power by using the least-squares kernel machine method.
基于基因和单核苷酸多态性(SNP)集的关联研究为SNP分析提供了重要补充。基于核的非参数回归最近已成为用于此目的的强大且灵活的工具。我们的目标是探索这种方法是否可以扩展以纳入和检验交互作用效应,特别是对于包含罕见变异SNP的基因。在此,我们构建了可用于在最小二乘核机器框架下纳入基因 - 环境交互作用效应的非参数回归模型,并在遗传分析研讨会17无关个体数据集上检验了所提出方法的性能。使用200个模拟重复来探索检测交互作用的效能。我们通过对定量表型Q1的全基因组扫描证明,使用最小二乘核机器方法可以以合理的效能检测数据中模拟的基因 - 环境交互作用效应。