Suppr超能文献

一种使用双内核机器的自适应基因关联测试。

An Adaptive Genetic Association Test Using Double Kernel Machines.

作者信息

Zhan Xiang, Epstein Michael P, Ghosh Debashis

机构信息

Department of Statistics, Pennsylvania State University, University Park, PA 16802, U.S.A. Tel.: +1-8143213493.

Department of Human Genetics, Emory University, Atlanta, GA 30322, U.S.A.

出版信息

Stat Biosci. 2015 Oct 1;7(2):262-281. doi: 10.1007/s12561-014-9116-2. Epub 2014 Jun 24.

Abstract

Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.

摘要

最近,基于基因集的方法在基因表达谱研究中变得非常流行,用于评估基因变异如何与疾病结果相关。由于大多数基因没有差异表达,现有的考虑通路内所有基因的通路测试会受到相当大的噪声和功效损失。此外,对于差异表达的通路,选择驱动通路效应的重要基因是很有意义的。在本文中,我们提出了一种使用双核机器(DKM)的自适应关联测试,它既可以选择通路内的重要基因,也可以测试整体基因通路效应。这个DKM过程首先使用截尾核机器(GKM)测试进行子集选择,然后使用最小二乘核机器(LSKM)测试来测试基因子集的效应。核机器框架的一个吸引人的特点是,它可以为基因通路效应的多维度建模提供一种灵活统一的方法,同时考虑参数和非参数成分。这种DKM方法通过应用于模拟数据以及神经影像遗传学研究的数据进行了说明。

相似文献

1
An Adaptive Genetic Association Test Using Double Kernel Machines.一种使用双内核机器的自适应基因关联测试。
Stat Biosci. 2015 Oct 1;7(2):262-281. doi: 10.1007/s12561-014-9116-2. Epub 2014 Jun 24.
7
On the use of kernel machines for Mendelian randomization.关于核机器在孟德尔随机化中的应用。
Quant Biol. 2017 Dec;5(4):368-379. doi: 10.1007/s40484-017-0124-3. Epub 2017 Nov 20.
9
Deep Restricted Kernel Machines Using Conjugate Feature Duality.使用共轭特征对偶的深度受限核机器
Neural Comput. 2017 Aug;29(8):2123-2163. doi: 10.1162/NECO_a_00984. Epub 2017 May 31.

本文引用的文献

2
Adaptive tests for association analysis of rare variants.稀有变异关联分析的适应性检验。
Genet Epidemiol. 2011 Jul;35(5):381-8. doi: 10.1002/gepi.20586. Epub 2011 Apr 25.
7

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验