Suppr超能文献

在机器人辅助脑卒中患者神经康复过程中对亚任务水平的运动改善进行跟踪。

Tracking motor improvement at the subtask level during robot-aided neurorehabilitation of stroke patients.

机构信息

Scuola Superiore Sant'Anna, BioRobotics Institute, Pisa, Italy.

出版信息

Neurorehabil Neural Repair. 2012 Sep;26(7):822-33. doi: 10.1177/1545968311431966. Epub 2012 Feb 28.

Abstract

BACKGROUND

Robot-aided neurorehabilitation can provide intensive, repetitious training to improve upper-limb function after stroke. To be more effective, motor therapy ought to be progressive and continuously challenge the patient's ability. Current robotic systems have limited customization capability and require a physiotherapist to assess progress and adapt therapy accordingly.

OBJECTIVE

The authors aimed to track motor improvement during robot-assistive training and test a tool to more automatically adjust training.

METHODS

A total of 18 participants with chronic stroke were trained using a multicomponent reaching task assisted by a shoulder-elbow robotic assist. The time course of motor gains was assessed for each subtask of the practiced exercise. A statistical algorithm was then tested on simulated data to validate its ability to track improvement and subsequently applied to the recorded data to determine its performance compared with a therapist.

RESULTS

Patients' recovery of motor function exhibited a time course dependent on the particular component of the executed task, suggesting that differential training on a subtask level is needed to continuously challenge the neuromuscular system and boost recovery. The proposed algorithm was tested on simulated data and was proven to track overall patient's progress during rehabilitation.

CONCLUSIONS

Tuning of the training program at the subtask level may accelerate the process of motor relearning. The algorithm proposed to adjust task difficulty opens new possibilities to automatically customize robotic-assistive training.

摘要

背景

机器人辅助神经康复可以提供强化、重复的训练,以改善中风后的上肢功能。为了更有效,运动疗法应该是渐进的,并不断挑战患者的能力。目前的机器人系统定制能力有限,需要物理治疗师来评估进展并相应地调整治疗。

目的

作者旨在跟踪机器人辅助训练过程中的运动改善,并测试一种更自动调整训练的工具。

方法

共有 18 名慢性中风患者使用肩部-肘部机器人辅助进行多组件的伸展任务训练。评估了练习中每个子任务的运动增益时间过程。然后,对模拟数据进行了统计算法测试,以验证其跟踪改善的能力,随后将其应用于记录的数据,以确定其与治疗师相比的性能。

结果

患者的运动功能恢复表现出依赖于执行任务特定组件的时间过程,这表明需要在子任务级别进行差异化训练,以持续挑战神经肌肉系统并促进恢复。所提出的算法在模拟数据上进行了测试,证明可以跟踪康复过程中患者的整体进展。

结论

在子任务级别调整训练计划可能会加速运动再学习的过程。提出的调整任务难度的算法为自动定制机器人辅助训练开辟了新的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验