Goffredo Michela, Pournajaf Sanaz, Proietti Stefania, Gison Annalisa, Posteraro Federico, Franceschini Marco
Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy.
Rehabilitation Department, Versilia Hospital, Azienda Unità Sanitaria Locale (AUSL) Northwest Tuscany, Camaiore, Italy.
Front Neurol. 2021 Dec 21;12:803901. doi: 10.3389/fneur.2021.803901. eCollection 2021.
The efficacy of upper-limb Robot-assisted Therapy (ulRT) in stroke subjects is well-established. The robot-measured kinematic data can assess the biomechanical changes induced by ulRT and the progress of patient over time. However, literature on the analysis of pre-treatment kinematic parameters as predictive biomarkers of upper limb recovery is limited. The aim of this study was to calculate pre-treatment kinematic parameters from point-to-point reaching movements in different directions and to identify biomarkers of upper-limb motor recovery in subacute stroke subjects after ulRT. An observational retrospective study was conducted on 66 subacute stroke subjects who underwent ulRT with an end-effector robot. Kinematic parameters were calculated from the robot-measured trajectories during movements in different directions. A Generalized Linear Model (GLM) was applied considering the post-treatment Upper Limb Motricity Index and the kinematic parameters (from demanding directions of movement) as dependent variables, and the pre-treatment kinematic parameters as independent variables. A subset of kinematic parameters significantly predicted the motor impairment after ulRT: the accuracy in adduction and internal rotation movements of the shoulder was the major predictor of post-treatment Upper Limb Motricity Index. The post-treatment kinematic parameters of the most demanding directions of movement significantly depended on the ability to execute elbow flexion-extension and abduction and external rotation movements of the shoulder at baseline. The multidirectional analysis of robot-measured kinematic data predicts motor recovery in subacute stroke survivors and paves the way in identifying subjects who may benefit more from ulRT.
上肢机器人辅助治疗(ulRT)对中风患者的疗效已得到充分证实。机器人测量的运动学数据可以评估ulRT引起的生物力学变化以及患者随时间的进展情况。然而,关于将治疗前运动学参数作为上肢恢复预测生物标志物的分析的文献有限。本研究的目的是从不同方向的点对点伸手动作中计算治疗前运动学参数,并确定亚急性中风患者在接受ulRT后上肢运动恢复的生物标志物。对66名接受末端执行器机器人ulRT治疗的亚急性中风患者进行了一项观察性回顾性研究。运动学参数是根据机器人在不同方向运动期间测量的轨迹计算得出的。应用广义线性模型(GLM),将治疗后上肢运动指数和运动学参数(来自要求较高的运动方向)作为因变量,将治疗前运动学参数作为自变量。一组运动学参数显著预测了ulRT后的运动障碍:肩部内收和内旋运动的准确性是治疗后上肢运动指数的主要预测指标。要求最高的运动方向的治疗后运动学参数显著取决于基线时执行肘部屈伸以及肩部外展和外旋运动的能力。对机器人测量的运动学数据进行多方向分析可预测亚急性中风幸存者的运动恢复情况,并为识别可能从ulRT中获益更多的患者铺平道路。