Suppr超能文献

牙片上的小梁模式稀疏:视觉评估与半自动测量比较。

Sparseness of the trabecular pattern on dental radiographs: visual assessment compared with semi-automated measurements.

机构信息

Department of Oral and Maxillofacial Radiology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands.

出版信息

Br J Radiol. 2012 Aug;85(1016):e455-60. doi: 10.1259/bjr/32962542. Epub 2012 Feb 28.

Abstract

OBJECTIVE

In diagnostic imaging; human perception is the most prominent, yet least studied, source of error. A better understanding of image perception will help to improve diagnostic performance. This study focuses on the perception of coarseness of trabecular patterns on dental radiographs. Comparison of human vision with machine vision should yield knowledge on human perception.

METHOD

In a study on identifying osteoporotic patients, dental radiographs were made from 505 post-menopausal women aged 45-70 years. Intra-oral radiographs of the lower and upper jaws were made. Five observers graded the trabecular pattern as dense, sparse or mixed. The five gradings were combined into a single averaged observer score per jaw. The radiographs were scanned and a region of interest (ROI) was indicated on each. The ROIs were processed with image analysis software measuring 25 image features. Pearson correlation and multiple linear regression were used to compare the averaged observer score with the image features.

RESULTS

14 image features correlated significantly with the observer judgement for both jaws. The strongest correlation was found for the average grey value in the ROI. Other features, describing that osteoporotic patients have fewer but bigger marrow spaces than controls, correlated less with the sparseness of the trabecular pattern than a rather crude measure for structure such as the average grey value.

CONCLUSION

Human perception of the sparseness of trabecular patterns is based more on average grey values of the ROI than on geometric details within the ROI.

摘要

目的

在诊断影像学中,人类感知是最显著但研究最少的误差源。更好地了解图像感知将有助于提高诊断性能。本研究专注于牙齿 X 光片上的骨小梁模式粗糙感的感知。人与机器视觉的比较应该能提供有关人类感知的知识。

方法

在一项针对骨质疏松症患者识别的研究中,对 505 名 45-70 岁绝经后女性进行了口腔内 X 光检查。对上下颌进行了口腔内 X 光检查。五位观察者将骨小梁模式评为密集、稀疏或混合。这五种分级被合并为每颌一个单一的平均观察者评分。对 X 光片进行扫描,并在每个 X 光片上标记感兴趣区域(ROI)。使用图像分析软件对 ROI 进行处理,测量了 25 个图像特征。使用 Pearson 相关和多元线性回归来比较平均观察者评分与图像特征。

结果

14 个图像特征与两个颌骨的观察者判断显著相关。ROI 中的平均灰度值相关性最强。其他描述骨质疏松症患者的骨髓空间比对照组更少但更大的特征与骨小梁模式的稀疏程度的相关性不如平均灰度值等对结构的粗略测量。

结论

人类对骨小梁模式稀疏度的感知更多地基于 ROI 的平均灰度值,而不是 ROI 内的几何细节。

相似文献

3
Alterations of the trabecular pattern of the jaws in patients with osteoporosis.骨质疏松症患者颌骨小梁模式的改变。
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999 Nov;88(5):628-35. doi: 10.1016/s1079-2104(99)70097-1.
6
Predicting fractures using trabecular patterns on panoramic radiographs.利用全景片上的骨小梁模式预测骨折。
Clin Oral Investig. 2018 Jan;22(1):377-384. doi: 10.1007/s00784-017-2122-2. Epub 2017 Jun 1.

引用本文的文献

5
Predicting fractures using trabecular patterns on panoramic radiographs.利用全景片上的骨小梁模式预测骨折。
Clin Oral Investig. 2018 Jan;22(1):377-384. doi: 10.1007/s00784-017-2122-2. Epub 2017 Jun 1.

本文引用的文献

1
Microarchitecture in focus.聚焦微观结构。
Osteoporos Int. 2010 Jun;21 Suppl 2:S403-6. doi: 10.1007/s00198-010-1242-1. Epub 2010 May 13.
4
7
Osteoporosis detection using intraoral densitometry.使用口腔内骨密度测量法检测骨质疏松症。
Dentomaxillofac Radiol. 2008 Jul;37(5):282-7. doi: 10.1259/dmfr/30424604.
10
Prediction of bone mineral density with dental radiographs.利用牙科X光片预测骨密度。
Bone. 2007 May;40(5):1217-21. doi: 10.1016/j.bone.2007.01.009. Epub 2007 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验