Department of Plant Physiology, Ruhr University Bochum, D-44801 Bochum, Germany.
Plant Cell. 2012 Feb;24(2):738-61. doi: 10.1105/tpc.111.090431. Epub 2012 Feb 28.
The transition metal copper (Cu) is essential for all living organisms but is toxic when present in excess. To identify Cu deficiency responses comprehensively, we conducted genome-wide sequencing-based transcript profiling of Arabidopsis thaliana wild-type plants and of a mutant defective in the gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), which acts as a transcriptional regulator of Cu deficiency responses. In response to Cu deficiency, FERRIC REDUCTASE OXIDASE5 (FRO5) and FRO4 transcript levels increased strongly, in an SPL7-dependent manner. Biochemical assays and confocal imaging of a Cu-specific fluorophore showed that high-affinity root Cu uptake requires prior FRO5/FRO4-dependent Cu(II)-specific reduction to Cu(I) and SPL7 function. Plant iron (Fe) deficiency markers were activated in Cu-deficient media, in which reduced growth of the spl7 mutant was partially rescued by Fe supplementation. Cultivation in Cu-deficient media caused a defect in root-to-shoot Fe translocation, which was exacerbated in spl7 and associated with a lack of ferroxidase activity. This is consistent with a possible role for a multicopper oxidase in Arabidopsis Fe homeostasis, as previously described in yeast, humans, and green algae. These insights into root Cu uptake and the interaction between Cu and Fe homeostasis will advance plant nutrition, crop breeding, and biogeochemical research.
过渡金属铜(Cu)是所有生物必需的,但过量存在时会有毒性。为了全面鉴定 Cu 缺乏响应,我们对拟南芥野生型植物和编码 SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7(SPL7)基因缺陷的突变体进行了基于全基因组测序的转录谱分析,SPL7 作为 Cu 缺乏响应的转录调节剂。在 Cu 缺乏时,FERRIC REDUCTASE OXIDASE5(FRO5)和 FRO4 的转录水平以 SPL7 依赖的方式强烈增加。生化测定和 Cu 特异性荧光团的共聚焦成像表明,高亲和力根 Cu 摄取需要 FRO5/FRO4 依赖的 Cu(II)-特异性还原为 Cu(I)和 SPL7 功能。在 Cu 缺乏培养基中,植物铁(Fe)缺乏标志物被激活,在其中,Fe 补充部分挽救了 Cu 缺乏培养基中 spl7 突变体的生长不良。在 Cu 缺乏培养基中培养导致根到茎的 Fe 转运缺陷,在 spl7 中更为严重,并且与缺乏亚铁氧化酶活性有关。这与在酵母、人类和绿藻中先前描述的多铜氧化酶在拟南芥 Fe 稳态中的可能作用一致。这些对根 Cu 摄取和 Cu 与 Fe 稳态相互作用的深入了解将推进植物营养、作物培育和生物地球化学研究。