Suppr超能文献

靶向 DNA G-四链体结构的肽核酸。

Targeting DNA G-quadruplex structures with peptide nucleic acids.

机构信息

NIH/CC/RAD&IS, Bethesda, MD 20892-1180 USA.

出版信息

Curr Pharm Des. 2012;18(14):1984-91. doi: 10.2174/138161212799958440.

Abstract

Regulation of genetic functions based on targeting DNA or RNA sequences with complementary oligonucleotides is especially attractive in the post-genome era. Oligonucleotides can be rationally designed to bind their targets based on simple nucleic acid base pairing rules. However, the use of natural DNA and RNA oligonucleotides as targeting probes can cause numerous off-target effects. In addition, natural nucleic acids are prone to degradation in vivo by various nucleases. To address these problems, nucleic acid mimics such as peptide nucleic acids (PNA) have been developed. They are more stable, show less off-target effects, and, in general, have better binding affinity to their targets. However, their high affinity to DNA can reduce their sequence-specificity. The formation of alternative DNA secondary structures, such as the G-quadruplex, provides an extra level of specificity as targets for PNA oligomers. PNA probes can target the loops of G-quadruplex, invade the core by forming PNA-DNA guanine-tetrads, or bind to the open bases on the complementary cytosine-rich strand. Not only could the development of such G-quadruplex-specific probes allow regulation of gene expression, but it will also provide a means to clarify the biological roles G-quadruplex structures may possess.

摘要

基于与互补寡核苷酸结合的 DNA 或 RNA 序列来调控遗传功能,在后基因组时代尤其具有吸引力。寡核苷酸可以根据简单的核酸碱基配对规则进行合理设计,以结合其靶标。然而,天然 DNA 和 RNA 寡核苷酸作为靶向探针的使用会引起许多脱靶效应。此外,天然核酸在体内容易被各种核酸酶降解。为了解决这些问题,已经开发了核酸类似物,如肽核酸(PNA)。它们更稳定,脱靶效应更小,通常与靶标具有更好的结合亲和力。然而,它们与 DNA 的高亲和力会降低其序列特异性。形成替代 DNA 二级结构,如 G-四链体,为 PNA 寡聚物提供了额外的靶标特异性。PNA 探针可以靶向 G-四链体的环,通过形成 PNA-DNA 鸟嘌呤四联体侵入核心,或与互补富含胞嘧啶的链上的开放碱基结合。这种 G-四链体特异性探针的开发不仅可以调控基因表达,还可以提供一种阐明 G-四链体结构可能具有的生物学作用的手段。

相似文献

1
Targeting DNA G-quadruplex structures with peptide nucleic acids.
Curr Pharm Des. 2012;18(14):1984-91. doi: 10.2174/138161212799958440.
2
High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.
Biochemistry. 2007 Sep 18;46(37):10433-43. doi: 10.1021/bi700854r. Epub 2007 Aug 24.
3
Quadruplex formation is necessary for stable PNA invasion into duplex DNA of BCL2 promoter region.
Nucleic Acids Res. 2011 Sep 1;39(16):7114-23. doi: 10.1093/nar/gkr259. Epub 2011 May 18.
5
Loop and backbone modifications of peptide nucleic acid improve g-quadruplex binding selectivity.
J Am Chem Soc. 2009 Dec 30;131(51):18415-24. doi: 10.1021/ja907250j.
7
Formation and characterization of PNA-containing heteroquadruplexes.
Methods Mol Biol. 2014;1050:73-82. doi: 10.1007/978-1-62703-553-8_6.
8
Multivalent LKγ-PNA oligomers bind to a human telomere DNA G-rich sequence to form quadruplexes.
Bioorg Med Chem Lett. 2015 Nov 1;25(21):4757-4760. doi: 10.1016/j.bmcl.2015.07.075. Epub 2015 Jul 29.
9
Hybridization of PNA to structured DNA targets: quadruplex invasion and the overhang effect.
J Am Chem Soc. 2001 Oct 3;123(39):9612-9. doi: 10.1021/ja016204c.
10
G-quadruplex formation between G-rich PNA and homologous sequences in oligonucleotides and supercoiled plasmid DNA.
Nucleic Acid Ther. 2015 Apr;25(2):78-84. doi: 10.1089/nat.2014.0517. Epub 2015 Feb 4.

引用本文的文献

1
Quadruplex-duplex junction in LTR-III: A molecular insight into the complexes with BMH-21, namitecan and doxorubicin.
PLoS One. 2024 Jul 24;19(7):e0306239. doi: 10.1371/journal.pone.0306239. eCollection 2024.
2
Artificial genetic polymers against human pathologies.
Biol Direct. 2022 Dec 6;17(1):39. doi: 10.1186/s13062-022-00353-7.
4
carba-Nucleopeptides (cNPs): A Biopharmaceutical Modality Formed through Aqueous Rhodamine B Photoredox Catalysis.
Angew Chem Int Ed Engl. 2022 Jul 11;61(28):e202205606. doi: 10.1002/anie.202205606. Epub 2022 May 17.
5
Binding Studies of Aloe-Active Compounds with G-Quadruplex Sequences.
ACS Omega. 2021 Jul 9;6(28):18344-18351. doi: 10.1021/acsomega.1c02207. eCollection 2021 Jul 20.
7
G-quadruplex formation between G-rich PNA and homologous sequences in oligonucleotides and supercoiled plasmid DNA.
Nucleic Acid Ther. 2015 Apr;25(2):78-84. doi: 10.1089/nat.2014.0517. Epub 2015 Feb 4.
8
Small antisense oligonucleotides against G-quadruplexes: specific mRNA translational switches.
Nucleic Acids Res. 2015 Jan;43(1):595-606. doi: 10.1093/nar/gku1311. Epub 2014 Dec 15.
9
Targeting DNA G-quadruplexes with helical small molecules.
Chembiochem. 2014 Nov 24;15(17):2563-70. doi: 10.1002/cbic.201402439. Epub 2014 Sep 26.
10
PPG peptide nucleic acids that promote DNA guanine quadruplexes.
Chembiochem. 2014 Sep 5;15(13):1887-90. doi: 10.1002/cbic.201402224. Epub 2014 Jul 8.

本文引用的文献

2
A structural analysis of G-quadruplex/ligand interactions.
Biochimie. 2011 Aug;93(8):1239-51. doi: 10.1016/j.biochi.2011.05.012. Epub 2011 May 26.
4
Quadruplex formation is necessary for stable PNA invasion into duplex DNA of BCL2 promoter region.
Nucleic Acids Res. 2011 Sep 1;39(16):7114-23. doi: 10.1093/nar/gkr259. Epub 2011 May 18.
5
G-quadruplex structures and G-quadruplex-interactive compounds.
Methods Mol Biol. 2011;735:77-96. doi: 10.1007/978-1-61779-092-8_8.
7
G-quadruplexes: from guanine gels to chemotherapeutics.
Mol Biotechnol. 2011 Oct;49(2):198-208. doi: 10.1007/s12033-011-9395-5.
8
Targeting G-quadruplex structure in the human c-Kit promoter with short PNA sequences.
Bioconjug Chem. 2011 Apr 20;22(4):654-63. doi: 10.1021/bc100444v. Epub 2011 Mar 16.
9
The structure of a full turn of an A-DNA duplex d(CGCGGGTACCCGCG)₂.
Biochem Biophys Res Commun. 2011 Apr 8;407(2):307-12. doi: 10.1016/j.bbrc.2011.03.007. Epub 2011 Mar 21.
10
G4 motifs correlate with promoter-proximal transcriptional pausing in human genes.
Nucleic Acids Res. 2011 Jul;39(12):4975-83. doi: 10.1093/nar/gkr079. Epub 2011 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验