Department of Biochemistry & Nutrition, Central Food Technological Research Institute-A Council of Scientific and Industrial Research Laboratory, Mysore 570020, Karnataka State, India.
J Plant Physiol. 2012 May 1;169(7):718-30. doi: 10.1016/j.jplph.2012.01.007. Epub 2012 Feb 27.
The transcriptional regulation of multigenic eggplant (Solanum melongena) polyphenol oxidase genes (SmePPO) is orchestrated by their corresponding promoters which mediate developmentally regulated expression in response to myriad biotic and abiotic factors. However, information on structural features of SmePPO promoters and modulation of their expression by plant defense signals are lacking. In the present study, SmePPOPROMOTERs were cloned by genome walking, and their transcription start sites (TSS) were determined by RLM-RACE. Extensive sequence analyses revealed the presence of evolutionarily conserved and over-represented putative cis-acting elements involved in light-regulated transcription, biosynthetic pathways (phenylpropanoid/flavonoid), hormone signaling (abscisic acid, gibberellic acid, jasmonate and salicylate), elicitor and stress responses (cold/dehydration responses), sugar metabolism and plant defense signaling (W-BOX/WRKY) that are common to SmePPOPROMOTER1 and 2. The TSS for SmePPO genes are located 9-15bp upstream of ATG with variable lengths of 5' untranslated regions. Transcriptional profiling of SmePPOs in eggplant seedlings has indicated differential response to methyl jasmonate (MeJA) or salicylic acid (SA) treatment. In planta, while MeJA elicited expression of all the six SmePPOs, SA was only able to induce the expression of SmePPO4-6. Interestingly, in dual treatment, SA considerably repressed the MeJA-induced expression of SmePPOs. Functional dissection of SmePPOPROMOTER1 by deletion analyses using Agrobacterium-mediated transient expression in tobacco leaves has shown that MeJA enhances the SmePPOPROMOTER1-β-glucuronidase (GUS) expression in vivo, while SA does not. Histochemical and quantitative GUS assays have also indicated the negative effect of SA on MeJA-induced expression of SmePPOPROMOTER1. By combining in silico analyses, transcriptional profiling and expression of SmePPOPROMOTER1-GUS fusions, the role of SA on the modulation of MeJA-induced SmePPO1 expression has been elucidated. It is concluded that similar to the coding regions of multigenic SmePPOs, the regulatory elements are also evolutionarily conserved and fall into two distinct sub-classes based on their responses to MeJA and SA.
多基因茄子(Solanum melongena)多酚氧化酶基因(SmePPO)的转录调控是由它们相应的启动子协调的,这些启动子介导了对多种生物和非生物因素的发育调节表达。然而,关于 SmePPO 启动子的结构特征以及植物防御信号对其表达的调节的信息仍然缺乏。在本研究中,通过基因组步行克隆了 SmePPOPROMOTERs,并通过 RLM-RACE 确定了它们的转录起始位点(TSS)。广泛的序列分析表明,存在涉及光调节转录、生物合成途径(苯丙烷/类黄酮)、激素信号(脱落酸、赤霉素、茉莉酸和水杨酸)、激发子和应激反应(冷/脱水反应)、糖代谢和植物防御信号(W-BOX/WRKY)的进化保守和过表达的假定顺式作用元件,这些元件在 SmePPOPROMOTER1 和 2 中是共同的。SmePPO 基因的 TSS 位于 ATG 上游 9-15bp 处,5'非翻译区的长度可变。茄子幼苗中 SmePPOs 的转录谱分析表明,它们对甲基茉莉酸(MeJA)或水杨酸(SA)处理有不同的反应。在体内,虽然 MeJA 诱导了所有 6 个 SmePPOs 的表达,但 SA 只能诱导 SmePPO4-6 的表达。有趣的是,在双重处理中,SA 显著抑制了 MeJA 诱导的 SmePPOs 的表达。通过农杆菌介导的瞬时表达在烟草叶片中对 SmePPOPROMOTER1 进行缺失分析的功能剖析表明,MeJA 增强了体内 SmePPOPROMOTER1-β-葡糖苷酸酶(GUS)的表达,而 SA 则没有。组织化学和定量 GUS 分析也表明,SA 对 MeJA 诱导的 SmePPOPROMOTER1 表达有负作用。通过结合计算机分析、转录谱分析和 SmePPOPROMOTER1-GUS 融合的表达,阐明了 SA 对 MeJA 诱导的 SmePPO1 表达的调节作用。结论是,与多基因 SmePPOs 的编码区一样,调节元件也是进化保守的,并根据它们对 MeJA 和 SA 的反应分为两个不同的亚类。