Suppr超能文献

在酿酒酵母中,介体在调节 Pol II 延伸和核小体位移中的作用。

Role of Mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae.

机构信息

Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130.

出版信息

Genetics. 2012 May;191(1):95-106. doi: 10.1534/genetics.111.135806. Epub 2012 Feb 29.

Abstract

Mediator is a modular multisubunit complex that functions as a critical coregulator of RNA polymerase II (Pol II) transcription. While it is well accepted that Mediator plays important roles in the assembly and function of the preinitiation complex (PIC), less is known of its potential roles in regulating downstream steps of the transcription cycle. Here we use a combination of genetic and molecular approaches to investigate Mediator regulation of Pol II elongation in the model eukaryote, Saccharomyces cerevisiae. We find that ewe (expression without heat shock element) mutations in conserved Mediator subunits Med7, Med14, Med19, and Med21-all located within or adjacent to the middle module-severely diminish heat-shock-induced expression of the Hsf1-regulated HSP82 gene. Interestingly, these mutations do not impede Pol II recruitment to the gene's promoter but instead impair its transit through the coding region. This implies that a normal function of Mediator is to regulate a postinitiation step at HSP82. In addition, displacement of histones from promoter and coding regions, a hallmark of activated heat-shock genes, is significantly impaired in the med14 and med21 mutants. Suggestive of a more general role, ewe mutations confer hypersensitivity to the anti-elongation drug 6-azauracil (6-AU) and one of them-med21-impairs Pol II processivity on a GAL1-regulated reporter gene. Taken together, our results suggest that yeast Mediator, acting principally through its middle module, can regulate Pol II elongation at both heat-shock and non-heat-shock genes.

摘要

中介体是一个模块化的多亚基复合物,作为 RNA 聚合酶 II(Pol II)转录的关键共调节因子发挥作用。虽然人们普遍认为中介体在起始前复合物(PIC)的组装和功能中起着重要作用,但对其在转录周期下游步骤中的潜在作用知之甚少。在这里,我们使用遗传和分子方法的组合来研究模型真核生物酿酒酵母中中介体对 Pol II 延伸的调节作用。我们发现,保守的中介体亚基 Med7、Med14、Med19 和 Med21 中的 ewe(无热休克元件表达)突变——都位于中间模块内或附近——严重削弱了 Hsf1 调节的 HSP82 基因的热休克诱导表达。有趣的是,这些突变不会阻碍 Pol II 招募到基因的启动子,而是损害其通过编码区的运输。这意味着中介体的正常功能是调节 HSP82 基因的起始后步骤。此外,启动子和编码区组蛋白的置换,这是激活热休克基因的一个标志,在 med14 和 med21 突变体中显著受损。暗示着更普遍的作用,ewe 突变赋予对抗延伸药物 6-氮杂尿嘧啶(6-AU)的超敏性,并且其中之一——med21——在 GAL1 调节的报告基因上损害 Pol II 持续性。总之,我们的结果表明,酵母中介体主要通过其中间模块,可以调节热休克和非热休克基因的 Pol II 延伸。

相似文献

1
Role of Mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae.
Genetics. 2012 May;191(1):95-106. doi: 10.1534/genetics.111.135806. Epub 2012 Feb 29.
2
Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.
J Biol Chem. 2014 May 23;289(21):14981-95. doi: 10.1074/jbc.M113.529354. Epub 2014 Apr 11.
3
Role for the MED21-MED7 Hinge in Assembly of the Mediator-RNA Polymerase II Holoenzyme.
J Biol Chem. 2016 Dec 23;291(52):26886-26898. doi: 10.1074/jbc.M116.756098. Epub 2016 Nov 7.
4
Mediator recruitment to heat shock genes requires dual Hsf1 activation domains and mediator tail subunits Med15 and Med16.
J Biol Chem. 2013 Apr 26;288(17):12197-213. doi: 10.1074/jbc.M112.449553. Epub 2013 Feb 27.
6
Direct interaction of RNA polymerase II and mediator required for transcription in vivo.
Science. 2011 Mar 18;331(6023):1451-4. doi: 10.1126/science.1200188.
7
Origins and activity of the Mediator complex.
Semin Cell Dev Biol. 2011 Sep;22(7):729-34. doi: 10.1016/j.semcdb.2011.07.021. Epub 2011 Jul 28.
8
A functional module of yeast mediator that governs the dynamic range of heat-shock gene expression.
Genetics. 2006 Apr;172(4):2169-84. doi: 10.1534/genetics.105.052738. Epub 2006 Feb 1.
9
A Role for Mediator Core in Limiting Coactivator Recruitment in .
Genetics. 2020 Jun;215(2):407-420. doi: 10.1534/genetics.120.303254. Epub 2020 Apr 23.
10
Mediator dynamics during heat shock in budding yeast.
Genome Res. 2022 Jan;32(1):111-123. doi: 10.1101/gr.275750.121. Epub 2021 Nov 16.

引用本文的文献

1
Growth-regulated co-occupancy of Mediator and Lsm3 at intronic ribosomal protein genes.
Nucleic Acids Res. 2024 Jun 24;52(11):6220-6233. doi: 10.1093/nar/gkae266.
2
Yeast Mediator facilitates transcription initiation at most promoters via a Tail-independent mechanism.
Mol Cell. 2022 Nov 3;82(21):4033-4048.e7. doi: 10.1016/j.molcel.2022.09.016. Epub 2022 Oct 7.
3
Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion.
Curr Biol. 2022 Jul 11;32(13):2884-2896.e6. doi: 10.1016/j.cub.2022.05.019. Epub 2022 Jun 1.
5
A Genome Model to Explain Major Features of Neurodevelopmental Disorders in Newborns.
Biomed Inform Insights. 2019 Jul 31;11:1178222619863369. doi: 10.1177/1178222619863369. eCollection 2019.
6
Chromatin Architectural Changes during Cellular Senescence and Aging.
Genes (Basel). 2018 Apr 16;9(4):211. doi: 10.3390/genes9040211.
7
Transcription regulation by the Mediator complex.
Nat Rev Mol Cell Biol. 2018 Apr;19(4):262-274. doi: 10.1038/nrm.2017.115. Epub 2017 Dec 6.
8
Med15B Regulates Acid Stress Response and Tolerance in Candida glabrata by Altering Membrane Lipid Composition.
Appl Environ Microbiol. 2017 Aug 31;83(18). doi: 10.1128/AEM.01128-17. Print 2017 Sep 15.
9
Changes Membrane Sterol Composition To Help Candida glabrata Tolerate Low-pH Stress.
Appl Environ Microbiol. 2017 Aug 17;83(17). doi: 10.1128/AEM.00972-17. Print 2017 Sep 1.

本文引用的文献

1
Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast.
Cell. 2011 Dec 23;147(7):1484-97. doi: 10.1016/j.cell.2011.11.051.
2
Promoter elements regulate cytoplasmic mRNA decay.
Cell. 2011 Dec 23;147(7):1473-83. doi: 10.1016/j.cell.2011.12.005.
3
Heat shock reduces stalled RNA polymerase II and nucleosome turnover genome-wide.
Genes Dev. 2011 Nov 15;25(22):2387-97. doi: 10.1101/gad.177675.111.
4
Novel role for mediator complex subunit Srb5/Med18 in termination of transcription.
J Biol Chem. 2011 Oct 28;286(43):37053-7. doi: 10.1074/jbc.C111.295915. Epub 2011 Sep 14.
5
p53 Interacts with RNA polymerase II through its core domain and impairs Pol II processivity in vivo.
PLoS One. 2011;6(8):e22183. doi: 10.1371/journal.pone.0022183. Epub 2011 Aug 4.
6
Histone modifications influence mediator interactions with chromatin.
Nucleic Acids Res. 2011 Oct;39(19):8342-54. doi: 10.1093/nar/gkr551. Epub 2011 Jul 8.
7
Human mediator subunit MED26 functions as a docking site for transcription elongation factors.
Cell. 2011 Jul 8;146(1):92-104. doi: 10.1016/j.cell.2011.06.005.
8
Mediator influences telomeric silencing and cellular life span.
Mol Cell Biol. 2011 Jun;31(12):2413-21. doi: 10.1128/MCB.05242-11. Epub 2011 Apr 11.
9
Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly.
PLoS Biol. 2011 Mar;9(3):e1000603. doi: 10.1371/journal.pbio.1000603. Epub 2011 Mar 29.
10
Direct interaction of RNA polymerase II and mediator required for transcription in vivo.
Science. 2011 Mar 18;331(6023):1451-4. doi: 10.1126/science.1200188.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验