Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Korea.
Allergy Asthma Immunol Res. 2012 Mar;4(2):68-79. doi: 10.4168/aair.2012.4.2.68. Epub 2011 Nov 25.
Eosinophils arise from hematopoietic CD34(+) stem cells in the bone marrow. They acquire IL-5Rα on their surface at a very early stage during eosinophilopoiesis, and differentiate under the strong influence of interleukin (IL)-5. They then exit to the bloodstream, and enter the lung upon exposure to airway inflammatory signals, including eotaxins. In inflamed tissues, eosinophils act as key mediators of terminal effector functions and innate immunity and in linking to adaptive immune responses. Transcription factors GATA-1, CCAAT/enhancer-binding protein, and PU.1 play instructive roles in eosinophil specification from multipotent stem cells through a network of cooperative and antagonistic interactions. Not surprisingly, the interplay of these transcription factors is instrumental in forming the regulatory circuit of expression of eosinophil-specific genes, encoding eosinophil major basic protein and neurotoxin, CC chemokine receptor 3 eotaxin receptor, and IL-5 receptor alpha. Interestingly, a common feature is that the critical cis-acting elements for these transcription factors are clustered in exon 1 and intron 1 of these genes rather than their promoters. Elucidation of the mechanism of eosinophil development and activation may lead to selective elimination of eosinophils in animals and human subjects. Furthermore, availability of a range of genetically modified mice lacking or overproducing eosinophil-specific genes will facilitate evaluation of the roles of eosinophils in the pathogenesis of asthma. This review summarizes eosinophil biology, focusing on development and regulation of eosinophil-specific genes, with a heavy emphasis on the causative link between eosinophils and pathological development of asthma using genetically modified mice as models of asthma.
嗜酸性粒细胞来源于骨髓中的造血 CD34(+)干细胞。它们在嗜酸性粒细胞生成的早期阶段在表面获得白细胞介素 (IL)-5Rα,并在白细胞介素 (IL)-5 的强烈影响下分化。然后它们进入血液,并在暴露于气道炎症信号(包括嗜酸粒细胞趋化因子)时进入肺部。在炎症组织中,嗜酸性粒细胞作为终末效应功能和先天免疫的关键介质,以及与适应性免疫反应的联系发挥作用。转录因子 GATA-1、CCAAT/增强子结合蛋白和 PU.1 在多能干细胞从嗜酸性粒细胞特化中发挥指导作用,通过合作和拮抗相互作用的网络。毫不奇怪,这些转录因子的相互作用对于形成嗜酸性粒细胞特异性基因表达的调节回路至关重要,这些基因编码嗜酸性粒细胞主要碱性蛋白和神经毒素、CC 趋化因子受体 3 嗜酸粒细胞趋化因子受体和白细胞介素-5 受体 α。有趣的是,一个共同的特征是,这些转录因子的关键顺式作用元件聚集在这些基因的外显子 1 和内含子 1 中,而不是它们的启动子中。阐明嗜酸性粒细胞发育和激活的机制可能导致在动物和人类中选择性消除嗜酸性粒细胞。此外,一系列缺乏或过度产生嗜酸性粒细胞特异性基因的基因修饰小鼠的可用性将有助于评估嗜酸性粒细胞在哮喘发病机制中的作用。本综述总结了嗜酸性粒细胞生物学,重点关注嗜酸性粒细胞特异性基因的发育和调节,重点强调了使用基因修饰小鼠作为哮喘模型的嗜酸性粒细胞与哮喘病理性发展之间的因果关系。