Suppr超能文献

基因工程等离子体纳米阵列。

Genetically engineered plasmonic nanoarrays.

机构信息

Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215, USA.

出版信息

Nano Lett. 2012 Apr 11;12(4):2037-44. doi: 10.1021/nl300140g. Epub 2012 Mar 7.

Abstract

In the present Letter, we demonstrate how the design of metallic nanoparticle arrays with large electric field enhancement can be performed using the basic paradigm of engineering, namely the optimization of a well-defined objective function. Such optimization is carried out by coupling a genetic algorithm with the analytical multiparticle Mie theory. General design criteria for best enhancement of electric fields are obtained, unveiling the fundamental interplay between the near-field plasmonic and radiative photonic coupling. Our optimization approach is experimentally validated by surface-enhanced Raman scattering measurements, which demonstrate how genetically optimized arrays, fabricated using electron beam lithography, lead to order of ten improvement of Raman enhancement over nanoparticle dimer antennas, and order of one hundred improvement over optimal nanoparticle gratings. A rigorous design of nanoparticle arrays with optimal field enhancement is essential to the engineering of numerous nanoscale optical devices such as plasmon-enhanced biosensors, photodetectors, light sources and more efficient nonlinear optical elements for on chip integration.

摘要

在这封信件中,我们展示了如何使用工程学的基本范例——即优化定义明确的目标函数——来设计具有大电场增强的金属纳米粒子阵列。这种优化是通过将遗传算法与解析多粒子 Mie 理论相结合来实现的。我们获得了最佳电场增强的一般设计标准,揭示了近场等离子体和辐射光子耦合之间的基本相互作用。我们的优化方法通过表面增强拉曼散射测量得到了实验验证,该测量证明了如何通过电子束光刻制造的遗传优化阵列导致拉曼增强比纳米粒子二聚体天线提高了十个数量级,比最佳纳米粒子光栅提高了一个数量级。具有最佳场增强的纳米粒子阵列的严格设计对于众多纳米光学器件的工程学至关重要,例如等离子体增强生物传感器、光电探测器、光源以及用于片上集成的更高效非线性光学元件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验